Constrained Galerkin variational integrators and modified constrained symplectic Runge-Kutta methods

Theresa Wenger¹,a), Sina Ober-Blöbaum²,c) and Sigrid Leyendecker¹,d)

¹Chair of Applied Dynamics, University of Erlangen-Nuremberg, Haberstraße 1, 91058 Erlangen, Germany.
²Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom.

a)Corresponding author: theresa.wenger@fau.de
b)URL: http://lti.tf.uni-erlangen.de
c)sina.ober-blobaum@eng.ox.ac.uk
d)sigrid.leyendecker@fau.de

Abstract. The presented constrained Galerkin variational integrators base on the higher order variational integrators in [1], now applied to holonomically constrained systems and are an extension of the constrained Galerkin methods in [2]. Sufficient conditions are given to obtain a stably accurate integration scheme, its structure preserving properties are analysed and the convergence order as well as the computational efficiency are investigated numerically. The equivalence to constrained symplectic Runge-Kutta methods is shown, with focus on a modified constrained symplectic Runge-Kutta method, that was first introduced in [3], there for the unconstrained case.

INTRODUCTION

Variational integrators are of special interest in numerical integration theory, attributed to their structure preserving properties. They show no numerical drift in the energy and preserve first integrals induced by symmetries up to numerical accuracy, see e.g. [2], [4]. Their construction bases on the approximation of the action and applying Hamilton’s principle. Following the approach in [1], we use a choice of finite-dimensional function spaces together with quadrature formulas to approximate the action. Sufficient conditions are provided to ensure the solvability of the corresponding discrete Euler-Lagrange equations and to obtain a stably accurate higher order integration scheme. The inheritance of qualitative properties associated to the solution of the dynamical system to the discrete solution is analysed and the convergence order of the presented integrators is investigated numerically. Increasing the order brings higher accuracy while computational costs decrease, what is demonstrated numerically. The associated Hamiltonian map and its equivalence to constrained symplectic Runge-Kutta methods is discussed. Besides bringing up known results as the equivalence to the symplectic SPARK integrators in [5], we introduce a modified constrained symplectic Runge-Kutta method, that is an extension of the modified symplectic Runge-Kutta method, presented and analysed in [3], to the holonomically constrained case.

CONstrained GALerkin VARIATIONAL INTEGRATORS

Consider a configuration manifold \(Q = \mathbb{R}^n \) with the configuration vector \(q(t) \) and the velocity vector \(\dot{q}(t) \) in the tangent space \(T_q Q \). Time is denoted by \(t \). Suppose the motion is constrained by the vector valued function \(g(q) = 0 \in \mathbb{R}^m \) and \(0 \in \mathbb{R}^m \) is a regular value of \(g \), such that \(C = g^{-1}(0) = \{ q \in Q, g(q) = 0 \} \) defines a submanifold of dimension \((n-m)\). The augmented Lagrangian \(\bar{L} : TQ \times \mathbb{R}^m \rightarrow \mathbb{R} \) of a holonomically constrained mechanical system is composed of the kinetic energy \(T \) and the potential \(V \) augmented by the holonomic constraints \(g(q) \) multiplied by a Lagrange multiplier \(\lambda(t) \in \mathbb{R}^m \). The integral of the augmented Lagrangian over the time interval \([0,T]\) yields the augmented
action $\tilde{S} : C(Q \times \mathbb{R}^m) \to \mathbb{R}$

$$
\tilde{S}(q, \lambda) = \int_0^T \tilde{L}(q, \dot{q}, \lambda) dt = \int_0^T L(q, \dot{q}) - g(q) \cdot \lambda dt
$$

where $C(Q) = C([0, T], Q, q_0, q_N)$ is the space of smooth function $q : [0, T] \to Q$ with fixed endpoints $q(0) = q_0, q(T) = q_N \in C < Q$ and $C(\mathbb{R}^m) = C([0, T], \mathbb{R}^m)$ is the space of curves $\lambda : [0, T] \to \mathbb{R}^m$ with no boundary conditions. Referring to Hamilton’s principle, the solution curves $(q, \lambda) \in C(Q \times \mathbb{R}^m)$ make the action in Equation (1) stationary, yielding the constrained Euler-Lagrange equations of motion, which are index 3 differential algebraic equations (DAEs) of second order.

Construction Of The Integrators

Instead of discretising the DAE directly, variational integrators base on the approximation of the action in the variational principle, see e.g. [2], [1]. To this end, the finite-dimensional space of trajectories $C^c([0, h], Q) = \{ q \in C([0, h], Q) \mid q(0) = q^0, q(h) = q_{k+1}, q \in \Pi^c \}$ is used to approximate the space of trajectories $C([0, h], Q)$ and $C^w([0, h], \mathbb{R}^m) = \{ \lambda \in C([0, h], \mathbb{R}^m) \mid \lambda(0) = \lambda^0, \lambda(t) = \lambda_{k+1}, \lambda \in \Pi^w \}$ to approximate $C([0, h], \mathbb{R}^m)$, where Π^c and Π^w denote the space of polynomials of degree s and w, respectively. The polynomial q_d of degree s is uniquely defined by the $(s + 1)$ configurations $q_1 = (q_1, \ldots, q_s)$ at the control points $0 = d_0 < d_1 < \ldots < d_{s+1} < d_s = 1$ such that the polynomial passes through each q_d at the time $d_i, i = 0, \ldots, s$. Analogously, the $w + 1$ Lagrange multipliers $\lambda_d = (\lambda^0_1, \ldots, \lambda^0_s)$ at the control points $0 = \tilde{d}_0 < \tilde{d}_1 < \ldots < \tilde{d}_{w+1} < \tilde{d}_w = 1$ determine the polynomial λ_d uniquely. To approximate the continuous curves q and λ, the entire time interval $[0, T]$ is divided into N subintervals of the same length h and the polynomials $q_d : [kh, (k + 1)h] \to Q$, the derivative $\dot{q}_d : [kh, (k + 1)h] \to Q$ and $\lambda_d : [kh, (k + 1)h] \to \mathbb{R}^m$ provide piecewise approximations of q, \dot{q} and λ on $[0, h]$. To ensure continuity of the approximation on $[0, T]$, the conditions $q^0_1 = q^0_{k+1}$ and $\lambda^0_1 = \lambda^0_{k+1}$ are set. Furthermore, the integral of the augmented Lagrangian is approximated on each subinterval $[kh, (k + 1)h]$ via appropriate quadrature formulas, yielding the discrete augmented Lagrangian $\tilde{L}_d(q_d, \lambda_d), k = 0, \ldots, N - 1$ that gives summed up the discrete augmented action \tilde{S}_d, an approximation for the augmented action in Equation (1) on $[0, T]$. Different quadrature formulas are considered for the approximation of the integral of the Lagrangian and of the integral of the scalar product $g(q) \cdot \lambda$, in particular the quadrature formula $(c_i, b_i)_{i=1}^{r}$ of order $ordL$ for the first integral and $(f_i, e_i)_{i=1}^{r}$ of order $ordZ$ for the second one. In this work, the Gauss and the Lobatto quadrature are used. The quadrature points c_i (respectively f_i) are w.r.t. the time interval $[0, 1]$ and b_i (respectively e_i) are the associated weights. Applying Hamilton’s principle to \tilde{S}_d yields the discrete Euler-Lagrange equations

$$
\frac{\partial \tilde{L}_d}{\partial q^0_{k-1}} + \frac{\partial \tilde{L}_d}{\partial \dot{q}^0_k} = 0, \quad i = 1, \ldots, s - 1, \quad \frac{\partial \tilde{L}_d}{\partial \dot{\lambda}^0_k}, i = 0, \ldots, w - 1. \tag{2}
$$

To ensure their resolvability, we assume the Lagrangian to be regular and choose the order $ordL$ high enough such that the discrete Lagrangian flow is well defined, see [6], and provide two further sufficient conditions for unique resolvability. Condition 1 requires all quadrature nodes $f_i, i = 1, \ldots, z$, to be part of the control points $\tilde{d}_i, i = 0, \ldots, w$, of λ_d. As a consequence, the number of unknowns equals the number of equations in one time step, in particular when inserting the coefficients of the Lobatto-quadrature for $(f_i, e_i)_{i=1}^{r}$, we get $s + w$ equations for the $s + w$ unknowns $q^1_1, \ldots, q^1_s, \lambda^0_1, \ldots, \lambda^0_w$ and $s + w - 1$ equations for the $s + w - 1$ unknowns $q^1_s, \ldots, q^1_w, \lambda^1_1, \ldots, \lambda^1_{w-1}$ when inserting the coefficients of the Gauss-quadrature. To avoid linear dependence between the equations, the rank of the Jacobian $J = \frac{\partial \tilde{L}_d}{\partial q^0_k \partial \dot{q}^0_k} \mu = 0, \ldots, w - 1, \nu = 0, \ldots, s$ is investigated. If Condition 1 holds, $rk(J) = \min(w, s)$ respectively $rk(J) = \min(w - 1, s)$ when using the Lobatto respectively the Gauss quadrature for approximating the integral of $g(q) \cdot \lambda$. Thus, for the first case $s \geq w$ and for the second $s \geq w - 1$ has to hold to get linear independent discrete Euler-Lagrange equations, what gives Condition 2. Furthermore, a stably accurate integration scheme is eligible, see e.g. [7], meaning the constraints are fulfilled at time nodes $kh, k = 0, \ldots, N$, i.e. $g(q^0_k) = 0$. Otherwise the numerical solution can drift off the constraint manifold. Setting $f_c = 1$ together with Condition 1 causes the integration scheme to be stably accurate. Thus, the discrete Euler-Lagrange equations corresponding to a discrete augmented Lagrangian $\tilde{L}_d : (Q^{s+1} \times (\mathbb{R}^m)^{w+1}) \to \mathbb{R}$ of the form

$$
\tilde{L}_d(q_d, \lambda_d) = h \sum_{i=1}^r b_i L(q_d(c_i; h), \dot{q}_d(c_i; h); q_c) - h \sum_{i=0}^w e_i [g(q_d(\tilde{d}_h; q_c)) \cdot \lambda^0_k] \quad k = 0, \ldots, N - 1 \tag{3}
$$
where the Lobatto quadrature is used to approximate the integral of \(g(q) \cdot \lambda \) and Conditions 1 and 2 hold, yield a stiffly accurate variational integrator.

Properties And Numerical Results

The properties of these integrators are discussed next. The conjugate momenta \(p_k \) at the time nodes \(t_k, k = 0, \ldots, N - 1 \) can be calculated via the discrete Legendre transforms \(\mathcal{F}^+_{L_q} : (q^0_k, \dot{q}_k^0) \mapsto (p_k, q^0_k) = \left(\frac{\partial L(q, \dot{q})}{\partial \dot{q}_k}, q^0_k \right) \) and \(\mathcal{F}^+_{L_q} : (q^0_k, \dot{q}_k^0) \mapsto (p_k, q^0_k) = \left(\frac{\partial L(q, \dot{q})}{\partial \dot{q}_k}, q^0_k \right) \). The integrators are symplectic, thus showing a good energy behaviour. The energy error oscillates, but stays bounded even over a long simulation time, see the energy error of the planar pendulum exemplary for two integrators in Figure 1 (left). The invariance of the augmented Lagrangian \(\tilde{L} \) under a linear transformation is inherited to the discrete augmented Lagrangian in Equation (3). As stated in the discrete Noether theorem, see e.g. [4], [2], the corresponding momentum maps are then preserved along the solution of the discrete Euler-Lagrange equations. In Figure 1 (right) the error of the angular momentum of a 3D double pendulum is depicted exemplary for some combinations. It is smaller than the chosen Newton tolerance of \(10^{-10} \). A numerical investigation of the convergence order reveals staggered orders for the configuration \(q \), the conjugate momenta \(p \) and the Lagrange multiplier \(\lambda \). Using the coefficients of the Gauss (respectively of the Lobatto quadrature) for \((c_i, b_i)_{i=1}^{7} \) in Equation (3), reveals super convergence of \(2s \) in the configuration for \(r = s \) (respectively \(r = s + 1 \)), with \(w = s \). A numerical analysis regarding accuracy versus efficiency is carried out. The results in Figure 2 show that increasing the order, i.e. increasing \(s \), with \(s = w = r \), brings a smaller error in the configuration together with a shorter run-time.

RELATION OF CONSTRAINED VARIATIONAL INTEGRATORS AND RUNGE-KUTTA METHODS

It is known that special classes of variational integrators are equivalent to symplectic partitioned Runge-Kutta methods, see e.g. [4], [2]. Following the idea of proof given in [2], the equivalence of constrained variational integrators and constrained symplectic partitioned Runge-Kutta methods being a particular example of the SPARK methods is given in [5]. In particular, when inserting the coefficients of the Lobatto quadrature for \((c_i, b_i)_{i=1}^{r} \) in Equation (3), with \(r = s \) and...
$w = s - 1$, the associated Hamiltonian map is the constrained Lobatto IIIA-IIIB method of Jay [8]. Approximating the integral of the Lagrangian in Equation (3) via the Gauss quadrature, with $r = s$ and $s = w$, the associated Hamiltonian map is the symplectic (s, s)-Gauss-Lobatto SPARK method [5]. Note, that a Hamiltonian map being equivalent to the s-stage Gauss method can be obtained for the case that the Gauss quadrature is used for the approximation of both integrals in Equation (1) together with $w = s + 1$, $ordL = 2s$, $ordZ = 2s$ and ensuring that Condition 1 holds. However, as the method is not stably accurate, it is rather inappropriate for these type of equations, see [9].

Constrained Modified Runge-Kutta Methods

A focus in this contribution is on constrained Galerkin variational integrators derived from L_d in Equation (3), where the degree of the polynomial q_d is one less than the number r of quadrature points c_i. The Runge-Kutta construction method as in [4] fails for this particular choice, because the internal stage derivatives $\bar{Q}_i = q_d(c_i h)$, $i = 1, \ldots, s$, become linearly dependent, meaning $d^T \bar{Q} = 0$, $d = (d_1, \ldots, d_s)^T$, $\bar{Q} = (\bar{Q}_1, \ldots, \bar{Q}_s)^T$ with $d_i \neq 0$ for at least one $i = 1, \ldots, s$. A detailed analysis of the problem is given in [3], there for the unconstrained case. Furthermore, in [3] a modified Runge-Kutta method is derived that takes the linear dependence of the internal stage derivatives into account via an additional constraint. The approach given in [3] can be easily extended to the holonomically constrained case, as the internal stage derivatives \bar{Q}_i, $i = 1, \ldots, s$, only enter into the Lagrangian and do not affect the approximation of the integral of $g(q) \cdot \lambda$. The associated Hamiltonian map to L_d in Equation (3), with $q_d \in \Pi^{s-1}$, $r = s$ and $s \geq w$, is equivalent to the following modified Runge-Kutta scheme

$$
q_1 = q_0 + h \sum_{i=1}^{s} b_i \bar{Q}_i, \quad p_1 = p_0 + h \sum_{i=1}^{s} b_i \frac{\partial L}{\partial q}(Q_i, \bar{Q}_i) - h \sum_{i=0}^{w} \epsilon_i G^T(\bar{Q}_i) \lambda^l
$$

$$
Q_i = q_0 + h \sum_{j=1}^{s} a_{ij} Q_j, \quad P_i = p_0 + h \sum_{j=1}^{s} \bar{a}_{ij} \frac{\partial L}{\partial p}(Q_j, \bar{Q}_j) - h \sum_{j=0}^{w} \tilde{a}_{ij} G^T(\bar{Q}_j) \lambda^l - \frac{d_i}{b_i} \mu \quad i = 1, \ldots, s
$$

where

$\epsilon_i = \int_{0}^{c_i} l_{j_s-1}(\rho) d\rho \quad b_j = \int_{0}^{c_j} l_{j_s-1}(\rho) d\rho \quad i, j = 1, \ldots, s \quad \text{and} \quad b_i \tilde{a}_{ij} + b_j \bar{a}_{ji} - b_i b_j = 0$

with $a_{ij} = \int_{0}^{c_i} l_{j_s-1}(\rho) d\rho \quad b_j = \int_{0}^{c_j} l_{j_s-1}(\rho) d\rho \quad i, j = 1, \ldots, s \quad \text{and} \quad \tilde{a}_{ij} = \int_{0}^{c_i} \bar{l}_{j_s-1}(\rho) d\rho \quad e_j = \int_{0}^{c_j} \bar{l}_{j_s-1}(\rho) d\rho \quad i, j = 1, \ldots, s \quad \text{and} \quad e_i \tilde{a}_{ij} + b_i \bar{a}_{ji} - e_i b_j = 0$

REFERENCES