Electrostatic–viscoelastic finite element model of dielectric actuators

T. Schlögl, S. Leyendecker

Chair of Applied Dynamics, University of Erlangen-Nuremberg, Haberstr. 1, 91058 Erlangen, Germany

Received 20 April 2015; received in revised form 8 October 2015; accepted 15 October 2015
Available online 1 November 2015

Abstract

The aim of this work is to set up a numerical framework to characterise the deformation process and effective forces when voltage is applied to dielectric elastomer actuators. Based on an existing model for non-linear electro-elasticity that covers the static case only, inertia terms are included in order to obtain a description of the deformation process depending on time. A potential energy function that is composed of Neo-Hooke material behaviour, electric field energy and coupling terms covers the material properties. Combined with the kinetic energy, a Lagrange function forms the basis in a variational setting of the model. Viscoelastic effects are included using non-conservative forces and account for time dependent strains. The action is approximated using quadrature rules and discretising with finite elements in space. A discrete version of Hamilton’s principle leads to a structure preserving integration scheme for DEAs. The integration scheme is implemented as C++ code and applied to various examples.

Keywords: Dielectric elastomer; Electroactive polymer; Finite element model; Viscoelastic; Electrostatic; Hyperelastic

1. Introduction

Modern robotic systems still suffer some severe limitations with regard to their efficiency concerning energy and resources. Due to the high weight of electrical drives and portable batteries, they are far from being autarkic for longer times. Furthermore, the rigid coupling between electrical drives and joints does not allow for dynamic motions like they occur in nature, where flexible muscles act as an energy buffer. Due to their potential capability of solving some of these problems, dielectric elastomer actuators (DEAs, also called artificial muscles) are the subject of intense research [1–7]. As with capacitors, when an external voltage is applied to the conductive layers, an electric field is established. Resulting electrostatic stresses lead to a contraction of the DEA, as illustrated in Fig. 1.

Within the collaborative research project Bionicum,\(^\text{1}\) the use of artificial muscles is investigated. At the Institute for Factory Automation and Production Systems (FAPS) in Erlangen, Germany, the development of the automated production of multilayer DEAs together with lightweight power electronics is explored. A numerical framework to characterise the deformation process and effective forces is derived at the Chair of Applied Dynamics (LTD) in

\(^\text{1}\) see http://www.bionicum.de/forschung/projekte/muskeln/.

http://dx.doi.org/10.1016/j.cma.2015.10.017
0045-7825/© 2015 Elsevier B.V. All rights reserved.
In electronics, electrostriction generally describes the deformation of a dielectric material caused by an electric field, due to the interaction between charges [8]. Considering the sandwich structure of a DEA, charges can be found on the electrodes as free charges and in form of polarisation within the elastomer as bound charges. In 1998, using a simplified one-dimensional model, Pelrine et al. show that for incompressible elastomers, the resulting electrostatic pressure is twice the pressure present in a rigid plate capacitor [5]. It is stated that the additional forces arise because like charges on the electrodes repel each other. However, when applying the principle of virtual work, Pelrine implicitly assumes that all forces act perpendicular to the capacitor plates, leading to a one-dimensional model. Due to its simplicity, the derived scalar formula

$$p = \varepsilon_0 \varepsilon_r E^2$$ \hspace{1cm} (1)

for the effective pressure p, vacuum and relative permittivity ε_0 and ε_r and the electric field E is very popular. It is used in various publications for estimating the potential of dielectric actuators, but also for detailed investigations [3,9,7,6,10,11].

Motivated by inconsistent experiments and finite element analyses, in 2007, Wissler et al. propose a new physical interpretation of Pelrine’s equation (1), distinguishing “in-plane” and “out-of-plane” stresses [11]. Wissler compares measurement data to two-dimensional decoupled finite element simulations. They first evaluate the electric field distribution of a dielectric actuator in the cross section. Then, they calculate the two-dimensional mechanical pressure distribution resulting from the electric field. They find that Eq. (1) is correct in terms of absolute values. However, the force also has components in radial (“in-plane”) direction.

Generally, the three dimensional behaviour of DEAs is covered by the Maxwell equations and the balance of momentum as shown by Dorfmann et al. [12]. The resulting coupled problem is rather complex and can be solved analytically only for special cases. In 2007, Vu et al. present a variational finite element formulation for the static coupled problem [13]. This model can be used to simulate the static state of arbitrary dielectric actuator geometries.

In order to control kinematic systems that are driven by dielectric elastomers, information about the time dependent behaviour of the actuators is required. Moreover, elaborate manufacturing methods result in complex inner structures of the elastomers [14]. Hence, three dimensional simulations with a fine resolution are necessary to cover all non-linear effects and to understand and control the functional principle of artificial muscles. At the same time, the derived model needs to be as simple as possible, since complex finite element simulations tend to be computationally very costly.

Building on the static finite element formulation introduced by Vu [13], in this work inertia terms are added in order to include time effects. It is assumed that electrodynamic effects take place on a considerably smaller time scale than elastodynamic effects. In order to reduce computational costs, magnetic interactions are not considered. The mathematical model describing the strong form of the coupled problem is introduced in Section 2. In Section 3, a corresponding variational setting is derived. The hyperelastic material model from Vu [13] is extended by viscoelastic terms that account for damping. The viscous stress tensor is based on a three dimensional form of the Kelvin–Voigt model proposed by Wriggers [15].

The variational setting allows for a structure preserving time integration [16]. Instead of discretising the vector based equations of motion, the discretisation is introduced into the scalar Lagrangian, as shown in Section 4. This procedure guarantees that important characteristics of the system are preserved exactly as illustrated in various works [17–19].

In Section 5, the derived finite element model is applied to various numerical examples. The influence of viscoelasticity is investigated and computational costs are evaluated. A dielectric actuator model with realistic geometry illustrates that even a macroscopic model is capable of resolving microscopic effects.
2. Electrostatic–elastodynamic coupling

In this section, the basic equations of finite deformation and electric fields are presented and relevant mechanical and electrical quantities are introduced. Throughout this work, physical vectors and tensors are denoted in boldface, whereas 1-dimensional arrays are denoted by (●) and matrices by (★★). ∇ is the derivative of a with respect to b and material operations \(\nabla_X \cdot (●) \) and \(\nabla_X \times (●) \) differ from the spatial divergence \(\nabla \cdot (●) \) and the spatial curl \(\nabla \times (●) \). Material time derivatives are denoted with a dot (●).

The reference configuration of the stress free dielectric actuator at time \(t = 0 \) is denoted by \(B_0 \). The reference position vector \(X \) points to a material point of the body in reference configuration. The configuration of the body after a certain time \(t \) is denoted by \(B_t \), with the spatial position vector \(x(X, t) \) that points to the actual position of a material point \(X \). By the introduction of the deformation gradient \(F = \partial_X x \) and using Nanson’s formula, spatial line elements \(dx \), spatial area elements \(da = nda \) and spatial volume elements \(dV \) are related to their material counterparts \(dX, dA = NdA \) and \(dV \) by

\[
dx = F \cdot dX, \quad da = J F^{-T} \cdot dA, \quad dV = J dV,
\]

with the determinant of the deformation gradient \(J = \det F \) and the spatial and material surface normals \(n \) and \(N \). For symmetry reasons, the right Cauchy–Green tensor \(C = F^T \cdot F \) is often used when considering isotropic materials.

2.1. Material electrostatics

Maxwell’s equations covering electromagnetic effects are given by

\[
\begin{align*}
\nabla_X \times e + b &= 0 \quad \nabla_X \cdot d = \rho^f \\
\nabla_X \times h + d &= j^f \quad \nabla_X \cdot b = 0
\end{align*}
\]

with the electric field \(e \), magnetic induction \(b \), magnetic field \(h \), electric displacement \(d \), electric current density \(j^f \) and the density of free charges \(\rho^f \), all being spatial quantities. In the absence of magnetic fields, electric currents and free charges and with the assumption of quasi-static theory, Maxwell’s equations reduce to

\[
\nabla_X \times e = 0 \quad \nabla_X \cdot d = 0
\]

(4)

describing electrostatics [20,13,12]. Considering the integral forms of Eqs. (4)

\[
\oint_{C_t} e \cdot ds = 0 \quad \iint_{S_t} d \cdot da = 0
\]

(5)

with a closed curve \(C_t \) bounding a regular surface \(S_t \) of the spatial domain \(B_t \), material counterparts for \(e \) and \(d \) can be obtained by rewriting the integral forms with the help of Eqs. (2)

\[
\oint_{C_0} (F^T \cdot e) \cdot dS = 0 \quad \iint_{S_0} (J F^{-1} \cdot d) \cdot dA = 0
\]

(6)

with associated material quantities \(C_0 \) and \(S_0 \) of \(B_0 \). The definitions

\[
E = F^T \cdot e \quad D = J F^{-1} \cdot d
\]

(7)

motivate a material counterpart to Eqs. (4)

\[
\nabla_X \times E = 0 \quad \nabla_X \cdot D = 0,
\]

(8)

using the material electric field \(E \) and the material electric displacement \(D \) [21]. From Eq. (8) on the left hand side it directly follows that \(E \) can be expressed as the gradient of a scalar electric potential \(\phi \)

\[
E = -\partial_X \phi.
\]

2.2. Material momentum balance

The mechanical momentum balance in material configuration is given by

\[
\nabla_X \cdot P^{\text{mech}} + b = \rho_0 \ddot{X},
\]

(10)
with the first Piola–Kirchhoff stress tensor \(\mathbf{P}_{\text{mech}} \), material volume loading \(\mathbf{b}_0 \), material density \(\rho_0 \) and the absolute acceleration of a point \(\dot{x} \). Note that the volume force \(\mathbf{b}_0 \) is composed of a pure mechanical part \(\mathbf{b}_{0\text{mech}} \) and an electrical term \(\mathbf{b}_{0\text{ele}} \). In analogy to the Kelvin–Voigt model where the total force is split into the sum of an elastic and a viscous part, the total stress tensor can be split here to allow for viscoelastic material behaviour

\[
\mathbf{P}_{\text{mech}} = \mathbf{P}_{\text{ela}} + \mathbf{P}_{\text{vis}},
\]

where \(\mathbf{P}_{\text{ela}}(\mathbf{F}) \) is the conservative elastic stress and \(\mathbf{P}_{\text{vis}}(\mathbf{F}, \dot{\mathbf{F}}) \) the time dependent viscous part [15].

2.3. Electrostatic forces in deformable continua

Due to polarisation effects, an electric field exerts a material force \(\mathbf{b}_{0\text{ele}} \) on condensed matter that is given by

\[
\mathbf{b}_{0\text{ele}} = \nabla_x \left[\mathbf{F}^{-T} \cdot \mathbf{E} \right] \cdot \mathbf{P}_{\text{ola}},
\]

where \(\mathbf{P}_{\text{ola}} \) is the material polarisation vector [22]. Together with the relationship

\[
\mathbf{D} = \varepsilon_0 \mathbf{J} \mathbf{C}^{-1} \cdot \mathbf{E} + \mathbf{P}_{\text{ola}},
\]

where \(\varepsilon_0 \) is the vacuum permittivity and Eqs. (8), the force \(\mathbf{b}_{0\text{ele}} \) can be rewritten as [23]

\[
\mathbf{b}_{0\text{ele}} = \nabla_x \left[\mathbf{F}^{-T} \cdot \mathbf{E} \otimes \mathbf{D} - \frac{1}{2} \varepsilon_0 J [\mathbf{E} \cdot \mathbf{C}^{-1} \cdot \mathbf{E}] \mathbf{F}^{-T} \right].
\]

This allows for the introduction of an electrostatic stress tensor

\[
\mathbf{P}_{\text{ele}} = \mathbf{F}^{-T} \cdot \mathbf{E} \otimes \mathbf{D} - \frac{1}{2} \varepsilon_0 J [\mathbf{E} \cdot \mathbf{C}^{-1} \cdot \mathbf{E}] \mathbf{F}^{-T},
\]

such that the coupled problem including boundary conditions can be written as

\[
\nabla_x \cdot \mathbf{P}_{\text{tot}} + \mathbf{b}_{0\text{mech}} = \rho_0 \ddot{x} \quad \text{in } \mathcal{B}_0
\]

\[
\mathbf{P}_{\text{tot}} \cdot \mathbf{N} = \mathbf{T} \quad \text{in } \partial \mathcal{B}_0
\]

\[
\nabla_x \cdot \mathbf{D} = 0 \quad \text{in } \mathcal{B}_0
\]

\[
\mathbf{D} \cdot \mathbf{N} = -\mathbf{Q} \quad \text{in } \partial \mathcal{B}_{0q},
\]

where the total stress \(\mathbf{P}_{\text{tot}} \) is composed of

\[
\mathbf{P}_{\text{tot}} = \mathbf{P}_{\text{ela}} + \mathbf{P}_{\text{vis}} + \mathbf{P}_{\text{ele}},
\]

\(\mathbf{T} \) is an external traction on the boundary and \(\mathbf{Q} \) is the electric charge density on the boundary.

3. Variational setting of the electromechanically coupled problem

The set of equations (16) can be solved analytically only for special cases [12,13]. In order to solve Eqs. (16) numerically using the finite element method, a variational setting (integral form) is derived by evaluating the Lagrange–d’Alembert principle

\[
\delta S + \int_0^T \delta W_{\text{ext}} \, dt = 0
\]

that requires stationarity for the action \(S \) and the work of non-conservative forces \(W_{\text{ext}} \).

3.1. Variation of the action

The dynamic behaviour of the system is covered by the action \(S \) that is defined as the spacetime integral

\[
S = \int_0^T \int_{\mathcal{B}_0} \mathcal{L} \, dV \, dt
\]
over the Lagrangian density \mathcal{L} for the time interval $[0, T]$. The kinetic energy T is obtained by integrating the kinetic energy density T over the material domain B_0

$$T = \int_{B_0} T(\dot{x})dV,$$

(20)

with the kinetic energy density given by

$$T(\dot{x}) = \frac{1}{2} \rho_0 \dot{x} \cdot \dot{x}.$$

(21)

Accordingly, the potential energy Π is given by

$$\Pi = \int_{B_0} \Omega(F, E)dV,$$

(22)

with the strain energy density $\Omega(F, E)$ being a function of the deformation gradient F and the electric field E. Hence, the Lagrangian density becomes

$$\mathcal{L}(\dot{x}, F, E) = T(\dot{x}) - \Omega(F, E)$$

(23)

and the action $S[x, \phi]$ is a functional of the unknown spatial position vector x and the unknown electric potential ϕ. The variation of the action $S[x, \phi]$ is obtained by

$$\delta S = \int_0^T \int_{B_0} (\delta T - \delta \Omega) dV dt,$$

(24)

with the variation of the kinetic energy density δT and the variation of the strain energy density $\delta \Omega$. With regard to Eq. (21), the two terms of Eq. (24) become

$$\delta T = \rho_0 \dot{x} \cdot \dot{\delta x}$$

(25)

and

$$\delta \Omega = \partial_F \Omega : \delta F + \delta E \cdot \partial_E \Omega.$$

(26)

Considering the relationships

$$\delta F = \frac{\partial \delta x}{\partial X} \quad \text{and} \quad \delta E = -\frac{\partial \delta \phi}{\partial X},$$

(27)

applying integration by parts and using Gauss’s divergence theorem

$$\int_{B_0} \nabla_X \cdot (\bullet) dV = \oint_{\partial B_0} (\bullet) \cdot N dA,$$

(28)

the variation of the action δS can be expressed in terms of the translational variation δx and the electric potential variation $\delta \phi$ as

$$\delta S = \int_0^T \left\{ \int_{B_0} \left[\delta x \cdot \left(-\rho_0 \dot{x} + \nabla_X \cdot \partial_F \Omega \right) + \delta \phi \left(-\nabla_X \cdot \partial_E \Omega \right) \right] dV \\
+ \int_{\partial B_0} \left[\delta x \cdot \left(-\partial_F \Omega \cdot N \right) + \delta \phi \left(\partial_E \Omega \cdot N \right) \right] dA \right\} dt.$$

(29)

3.2. Effect of non-conservative forces

Non-conservative forces result from external surface stress $\mathbf{\overline{T}}$, associated with the surface stress work W^T, external volume force $b_{0,\text{mech}}$, associated with the volume force work W^b, external surface charge density $\mathbf{\overline{Q}}$, associated with
the surface charge work W^Q, and internal viscous stress P^{vis}, associated with the viscous work W^{vis}. The total non-conservative work W^{ext} and its variation δW^{ext} are given by

$$W^{\text{ext}} = W^T + W^b + W^Q + W^{\text{vis}}$$ \quad (30)

and

$$\delta W^{\text{ext}} = \delta W^T + \delta W^b + \delta W^Q + \delta W^{\text{vis}}$$ \quad (31)

with

$$W^T = \int_{\partial B_0} x \cdot \mathbf{T} \, dA$$

$$\delta W^T = \int_{\partial B_0} \delta x \cdot \mathbf{T} \, dA$$ \quad (32a)

$$W^b = \int_{B_0} \mathbf{x} \cdot b^{\text{mech}}_0 \, dV$$

$$\delta W^b = \int_{B_0} \delta \mathbf{x} \cdot b^{\text{mech}}_0 \, dV$$ \quad (32b)

$$W^Q = - \int_{\partial B_0} \phi \mathbf{Q} \, dA$$

$$\delta W^Q = - \int_{\partial B_0} \delta \phi \mathbf{Q} \, dA$$ \quad (32c)

$$W^{\text{vis}} = - \int_{B_0} \mathbf{F} : \mathbf{P}^{\text{vis}} \, dV$$

$$\delta W^{\text{vis}} = - \int_{B_0} \delta \mathbf{F} : \mathbf{P}^{\text{vis}} \, dV.$$ \quad (32d)

Note that non-conservative quantities \mathbf{T}, b^{mech}_0, \mathbf{Q} and P^{vis} are treated as fixed during variation. Using integration by parts and the divergence theorem, the variational form of Eq. (32d) is expressed as

$$\delta W^{\text{vis}} = \int_{B_0} \delta \mathbf{x} \cdot (\nabla \mathbf{x} \cdot P^{\text{vis}}) \, dV - \int_{\partial B_0} \delta \mathbf{x} \cdot P^{\text{vis}} \cdot \mathbf{N} \, dA.$$ \quad (33)

Inserting the variational form of the action and the non-conservative work into Eq. (18) that requires stationarity and considering the fundamental lemma of the calculus of variations, four independent equations

$$\nabla \mathbf{x} \cdot (\partial_F \Omega + P^{\text{vis}}) + b^{\text{mech}}_0 = \rho_0 \ddot{x}$$ \quad in B_0 \quad (34a)

$$\nabla \mathbf{x} \cdot (\partial_F \Omega + P^{\text{vis}}) \cdot \mathbf{N} = \mathbf{T}$$ \quad in ∂B_0 \quad (34b)

$$- \nabla \mathbf{x} \cdot \partial_E \Omega = 0$$ \quad in B_0 \quad (34c)

$$- \partial_E \Omega \cdot \mathbf{N} = - \mathbf{Q}$$ \quad in ∂B_{0q}, \quad (34d)

are obtained. If the strain energy density Ω is chosen such that

$$\partial_F \Omega = P^{\text{ela}} + P^{\text{ele}}$$ \quad (35)

and

$$\partial_E \Omega = -\mathbf{D},$$ \quad (36)

then the set of equations (16) is recovered. This means that Eq. (18) leads to a variational setting that is consistent to the problem formulated in Eqs. (16).

3.3. Hyper-viscoelastic material model

From the electrostatic stress given in Eq. (15) it follows that the strain energy density Ω must be composed of a condensed matter term Φ and a free space term including the vacuum permittivity ε_0

$$\Omega(F, E) = \Phi(F, E) - \frac{1}{2} \varepsilon_0 J C^{-1} : [E \otimes E],$$ \quad (37)

as shown in [13]. Here, the Neo-Hookean approach of the cited work is used, such that Φ becomes

$$\Phi(F, E) = \frac{\mu}{2} [C : 1 - 3] - \mu \ln(J) + \frac{\lambda}{2} [\ln(J)]^2 + c_1 E \cdot E + c_2 C : [E \otimes E].$$ \quad (38)
with the Lamé parameters \(\mu \) and \(\lambda \), the rank two identity tensor \(\mathbf{1} \) as well as two electrical parameters \(c_1 \) and \(c_2 \). Note that \(c_1 \) is a pure electrical parameter, whereas \(c_2 \) affects the electro-mechanical coupling term. Even though Neo-Hooke materials are not capable of representing very large strains of rubber like materials, they give quite good results for contractions to lengths being 70 to 80% of the original actuator length [24]. These strains are not expected to be exceeded within the application of DEAs as artificial muscles [7] and hence stability issues for large strains that are known from literature [25] are not affected.

For the viscoelastic stress \(\mathbf{P}^{\text{vis}} \), an approach from [15] is used, where the Kelvin–Voigt model is extended for three dimensions and finite strains, resulting in a second Piola–Kirchhoff stress tensor \(\mathbf{S}^{\text{vis}} \). This tensor is transformed to the material configuration by the push forward operation \(\mathbf{P}^{\text{vis}} = \mathbf{F} \cdot \mathbf{S}^{\text{vis}} \), such that after some calculation the first Piola–Kirchhoff stress tensor for viscous behaviour is given as

\[
\mathbf{P}^{\text{vis}}(\mathbf{F}, \dot{\mathbf{F}}) = \frac{1}{2} J \eta \left[\mathbf{F}^{-T} \cdot \dot{\mathbf{F}}^T \cdot \mathbf{F}^{-T} + \dot{\mathbf{F}} \cdot \mathbf{C}^{-1} \right],
\]

(39)

with the damping parameter \(\eta \).

This material model allows for easy identification of the parameters:

1. The mechanical Lamé parameters \(\mu \) and \(\lambda \) can be identified by comparing static and pure mechanical simulation results to measurement data of a specimen. In case of incompressible materials, only one parameter has to be determined. From tensile testing results, the shear modulus \(\mu \) can be identified.
2. Evaluating static coupled problems, the coupling parameter \(c_2 \) can be determined such that the contraction for applied voltages matches measurement data. Note that the contraction is independent of parameter \(c_1 \) since it is a pure electric parameter as seen in Eq. (38).
3. Parameter \(c_1 \) can be identified by comparing simulation results to the real amount of charge that is necessary to maintain a voltage. To illustrate that point, the capacity of the simulated geometry has to match the capacity of the real actuator. Parameter \(c_1 \) affects the potential energy that is stored in the electric field of the actuator.
4. The damping parameter \(\eta \) can be identified by comparing measurement data to the time that is needed for contraction. High speed cameras might be advantageous for taking precise measurements.

As there is currently no dielectric actuator available for taking precise measurements, the parameter values used in this paper are estimated as described in Section 5.1.

4. Discretisation of the variational setting and linearisation of resulting equations

Many integration schemes start with the time discretisation of the equations of motion (here Eqs. (16) or Eqs. (34)). Alternatively, the discretisation can be introduced into the action, resulting in a variational integration scheme that is structure preserving and shows a very good energy behaviour [16].

In detail, Noether’s theorem states that there is a one to one inter-relation between an invariance of the Lagrangian and a conserved quantity. In general, this coherence is infringed for arbitrary discretisation methods. However, the theorem still holds for the presented structure preserving integration scheme [17–19].

4.1. Discretisation of the action

Introducing a spacetime grid, the action integral given in Eq. (19) can be split into small time sections \([t_n, t_{n+1}]\) and finite elements \(B_{el}^{\text{el}} \), such that

\[
S = \sum_{n=0}^{N-1} \int_{t_n}^{t_{n+1}} \left[\sum_{el} \int_{B_{el}^{\text{el}}} \mathcal{L}(\dot{\mathbf{x}}, \mathbf{F}, \mathcal{E}) dV dt \right],
\]

(40)

where \(N \) is the total number of time sections and the time step size \(\Delta t = t_{n+1} - t_n \) is constant and chosen such that \(t_N = T \). Note that the finite element method (FEM) assembly operator \(\bigoplus \) composes the global quantities from local element contributions. For the scalar equation (40), the assembly operator may be replaced by the sum over
all elements \(\sum_{el} \). Within a finite element, the position and the potential as well as their derived quantities can be approximated by

\[
\begin{align*}
x(X, t) & \approx q_{el}(t) \circ \mathbf{N}_{el}^{\text{trans}}(X) \\
F(X, t) & \approx q_{el}(t) \circ \partial_X \mathbf{N}_{el}^{\text{trans}}(X) \\
\phi(X, t) & \approx q_{el}(t) \circ \mathbf{N}_{el}^{\text{ele}}(X) \\
E(X, t) & \approx -q_{el}(t) \circ \partial_X \mathbf{N}_{el}^{\text{ele}}(X),
\end{align*}
\]

(41a)

using FEM shape functions \(\mathbf{N}_{el}^{\text{trans}} \) and \(\mathbf{N}_{el}^{\text{ele}} \) [26]. The array \(q_{el} \) contains the values of all degrees of freedom of the element. If linear Lagrange shape functions are used for all space dimensions and the electric potential, \(q_{el} \) contains translations and electric potentials for each node of the element. Note that \(\mathbf{N}_{el}^{\text{trans}} \in \mathbb{R}^{n_{dof} \times n_{dim}} \) and \(\mathbf{N}_{el}^{\text{ele}} \in \mathbb{R}^{n_{dof}} \) with \(n_{dof} \) being the total number of degrees of freedom of the element and \(n_{dim} = 3 \) being the physical space dimension. Hence, \(\partial_X \mathbf{N}_{el}^{\text{trans}} \in \mathbb{R}^{n_{dof} \times n_{dim} \times n_{dim}} \) and \(\partial_X \mathbf{N}_{el}^{\text{ele}} \in \mathbb{R}^{n_{dof} \times n_{dim}} \). The operator \(\circ \) denotes the single contraction over all degrees of freedom \(n_{dof} \). The space discrete Lagrangian \(L_d \) is obtained by introducing the approximations given in Eqs. (41) into the Lagrangian density and integrating over space

\[
L_d(q, \dot{q}) = \left(\sum_{el} \right) \int_{B_0^\varepsilon} \mathcal{L} \left(\dot{q}_{el} \circ \mathbf{N}_{el}^{\text{trans}} \cdot q_{el} \circ \partial_X \mathbf{N}_{el}^{\text{trans}} \cdot -q_{el} \circ \partial_X \mathbf{N}_{el}^{\text{ele}} \right) dV,
\]

(42)

with the global array \(q(t) \) containing the values of all degrees of freedom of the model. Note that the spatial integral in Eq. (42) can be approximated using a Gauss quadrature on a reference cell \(\Box \) for a function \(f \) such that

\[
\int_{B_0^\varepsilon} f(X) dV = \int_{\Box} f(X(\xi)) \left| \frac{\partial X}{\partial \xi} \right| d\Box \approx \sum_{n_{\text{Gauss}}} w_{n_{\text{Gauss}}} f(X(\xi_{n_{\text{Gauss}}})) \left| \frac{\partial X}{\partial \xi} \right|,
\]

(43)

where \(n_{\text{Gauss}} \) is the number of integration points and \(w_{n_{\text{Gauss}}} \) are the Gauss weights [15]. Inserting the space discrete Lagrangian given in Eqs. (42) into the action \(S \), the spatially discretised action

\[
S_d = \sum_{n=0}^{N-1} \int_{t_n}^{t_{n+1}} L_d(q, \dot{q}) dt
\]

(44)

is obtained.

Next, within each time interval \([t_n, t_{n+1}]\), the temporal derivative is approximated with finite differences such that

\[
\dot{q}(t) \approx \frac{q^{n+1} - q^n}{\Delta t},
\]

(45)

where \(q^n \) is the approximation of \(q(t) \) at time \(t = t_n \). The time integral in Eq. (44) is approximated using a generalised midpoint quadrature with parameter \(\alpha \in [0, 1] \), leading to the fully discretised Lagrangian

\[
L_{dd} \left(q^n, q^{n+1} \right) = \Delta t \left(\alpha q^n + (1 - \alpha)q^{n+1}, \frac{q^{n+1} - q^n}{\Delta t} \right).
\]

(46)

Using the abbreviation \(L_{dd}^{n,n+1} = L_{dd}(q^n, q^{n+1}) \), the fully discretised action \(S_{dd} \) is given by

\[
S_{dd} = \sum_{n=0}^{N-1} L_{dd}^{n,n+1}.
\]

(47)

The variation of the fully discretised action

\[
\delta S_{dd} = \sum_{n=0}^{N-1} \left(D_1 L_{dd}^{n,n+1} \delta q^n + D_2 L_{dd}^{n,n+1} \delta q^{n+1} \right)
\]

(48)
with partial derivatives D_1 and D_2 with respect to the first and second argument is rewritten in order to factor out the variations δq such that

$$\delta S_{dd} = \sum_{n=1}^{N-1} \left(D_1 L_{dd, n+1}^{n,n+1} + D_2 L_{dd, n}^{n-1,n} \right) \delta q^n.$$ \hspace{1cm} (49)

This is admissible due to vanishing variations at the time limits, i.e. $\delta(0)^0 = (\delta \bullet)^N = 0$.

Considering the relationships $\delta x = \delta q_{el} \odot N^{\text{trans}}_{el} \delta \phi = \delta q_{el} \odot N^{\text{ele}}_{el}, \delta F = \delta q_{el} \odot \partial x N^{\text{ele}}_{el}$ and $\delta E = -\delta q_{el} \odot \partial x N^{\text{ele}}_{el}$, the variation of the fully discretised action can be written as

$$\delta S_{dd} = \Delta t \sum_{n=1}^{N-1} \delta q^n \odot \left\{ \int_{B_0} \left[N^{\text{trans}}_{el} \cdot \rho_0 \cdot N^{\text{trans}}_{el} \right] dV \odot - \frac{q^{n+1}_e + 2q^n_e - q^{n-1}_e}{\Delta t^2} - \int_{B_0} \left[\partial x N^{\text{trans}}_{el} \cdot \left(\alpha \partial_F \Omega^{n,n+1} + (1 - \alpha) \partial_F \Omega^{n-1,n} \right) \right] dV + \int_{B_0} \left[\partial x N^{\text{ele}}_{el} \cdot \left(\alpha \partial_F \Omega^{n,n+1} + (1 - \alpha) \partial_F \Omega^{n-1,n} \right) \right] dV \right\},$$ \hspace{1cm} (50)

where $\Omega^{n,n+1} = \Omega(\alpha F^n + (1 - \alpha) F^{n+1}, (1 - \alpha) E^n + (1 - \alpha) E^{n+1})$. Note that this is consistent with the midpoint quadrature introduced in Eq. (46) since F is linear in x and E is linear in ϕ. The mass matrix is introduced by

$$M = \bigcup_{el} \int_{B_0} \left[N_{el}^{\text{trans}} \cdot \rho_0 \cdot N_{el}^{\text{trans}} \right] dV$$ \hspace{1cm} (51)

and hence constant in time. The acceleration term that is right multiplied to the mass matrix is abbreviated by

$$\ddot{q}_{el} = \frac{q^{n+1}_e - 2q^n_e + q^{n-1}_e}{\Delta t^2},$$ \hspace{1cm} (52)

and the translational (R_F) and electrical (R_E) contributions are defined by

$$R_F = \bigcup_{el} \int_{B_0} \left[\partial x N^{\text{trans}}_{el} \cdot \left(\alpha \partial_F \Omega^{n,n+1} + (1 - \alpha) \partial_F \Omega^{n-1,n} \right) \right] dV$$ \hspace{1cm} (53)

and

$$R_E = \bigcup_{el} \int_{B_0} \left[\partial x N^{\text{ele}}_{el} \cdot \left(\alpha \partial_F \Omega^{n,n+1} + (1 - \alpha) \partial_F \Omega^{n-1,n} \right) \right] dV,$$ \hspace{1cm} (54)

respectively. Then, the variation of the fully discretised action can be written as

$$\delta S_{dd} = \Delta t \sum_{n=1}^{N-1} \delta q^n \odot \left\{ -M \odot \ddot{q}_{el} - R_F + R_E \right\}.$$ \hspace{1cm} (55)

Eq. (55) is the heart of the numerical problem that has to be solved including linear inertia terms $(\overline{M} \odot \ddot{q}_{el})$, non-linear internal forces (R_F) and non-linear internal charge densities (R_E).

4.2. Discretisation of non-conservative force contributions

The same generalised midpoint quadrature with parameter α as used for discretising the action as well as shape functions N_{el}^{trans} and N_{el}^{ele} are used to discretise the work of non-conservative forces given in Eqs. (30)–(32). Let $(\overline{\bullet}(t))$ be an externally applied quantity at time t, then $(\overline{\bullet})^{n,n+1}$ denotes the evaluation of the quantity at time $t = \alpha t^n + (1 - \alpha) t^{n+1}$ such that $(\overline{\bullet})^{n,n+1} = (\overline{\bullet})(\alpha t_0^n + (1 - \alpha) t_0^{n+1})$. N_{el}^{trans} and N_{el}^{ele} are shape functions being defined on the domain boundary ∂B_0.

After spatial discretisation, temporal discretisation and variation of the non-conservative terms in Eq. (18) that are further specified in Eq. (30), the discretised virtual work contributions are given by

\[
\int_0^T \delta W_{d_d}^T dt = \Delta t \sum_{n=1}^{N-1} \delta q^n \odot \left\{ \overline{R}_T \right\} \quad \text{with} \quad \overline{R}_T = \bigcup_i \int_{\partial E_0^i} \mathbf{N}_{\text{trans}}^c \cdot \left(\alpha \overline{T}^{n,n+1} + (1 - \alpha) \overline{T}^{n-1,n} \right) dA, \tag{56}
\]

associated with the external surface stress \(\overline{T} \),

\[
\int_0^T \delta W_{d_d}^b dt = \Delta t \sum_{n=1}^{N-1} \delta q^n \odot \left\{ \overline{R}_b \right\} \quad \text{with} \quad \overline{R}_b = \bigcup_i \int_{B_0^i} \mathbf{N}_{\text{trans}}^c \cdot \left(\alpha (b_0^{\text{mech}})^{n,n+1} + (1 - \alpha) (b_0^{\text{mech}})^{n-1,n} \right) dV, \tag{57}
\]

associated with the external volume force \(b_0^{\text{mech}} \) and

\[
\int_0^T \delta W_{d_d}^{\text{vis}} dt = -\Delta t \sum_{n=1}^{N-1} \delta q^n \odot \left\{ \overline{R}_{\text{vis}} \right\} \quad \text{with} \quad \overline{R}_{\text{vis}} = \bigcup_i \int_{E_0^i} \partial \mathbf{N}_{\text{trans}}^{c\text{el}} : \left(\alpha (P^{\text{vis}})^{n,n+1} + (1 - \alpha) (P^{\text{vis}})^{n-1,n} \right) dV, \tag{59}
\]

with \((P^{\text{vis}})^{n,n+1} = P^{\text{vis}} (\alpha F^n + (1 - \alpha) F^{n+1}, \frac{F^{n+1} - F^n}{\Delta t}) \). The variational integration scheme is obtained by evaluating a discrete version of the Lagrange–d’Alembert principle [16]

\[
\delta \delta q^n + \int_0^T \delta W_{d_d}^{\text{ext}} dt = 0, \tag{60}
\]

with

\[
\delta W_{d_d}^{\text{ext}} = \delta W_{d_d}^T + \delta W_{d_d}^b + \delta W_{d_d}^Q + \delta W_{d_d}^{\text{vis}}, \tag{61}
\]

such that

\[
\Delta t \sum_{n=1}^{N-1} \delta q^n \odot \left\{ -\mathbf{M} \otimes \ddot{q}_d - \mathbf{R}_F + \mathbf{R}_E + \overline{R}_T + \overline{R}_b - \overline{R}_Q - \overline{R}_{\text{vis}} \right\} = 0. \tag{62}
\]

Due to the arbitrariness of the variations \(q^n \), it follows that

\[
\Delta t F = 0 \quad \text{with} \quad F = -\mathbf{M} \otimes \ddot{q}_d - \mathbf{R}_F + \mathbf{R}_E + \overline{R}_T + \overline{R}_b - \overline{R}_Q - \overline{R}_{\text{vis}}, \tag{63}
\]

where the size of \(F \) corresponds to the total number of degrees of freedom in the model. Note that the constant time step size \(\Delta t \) in Eq. (63) might be crossed out. However, keeping the term results in better condition numbers during time integration as well as consistent units compared to the continuous system. Eq. (63) is the non-linear coupled variational integration scheme. For given states \(q^{n-1} \) and \(q^n \), the next state \(q^{n+1} \) can be evaluated.

4.3. Linearisation of the integration scheme

For general midpoint quadrature with arbitrary parameter \(\alpha \), it follows that \(R_F = R_F(q^{n-1}, q^n, q^{n+1}) \), \(R_E = R_E(q^{n-1}, q^n, q^{n+1}) \) and \(R_D = R_D(q^{n-1}, q^n, q^{n+1}) \), such that Eq. (63) cannot be solved explicitly.
Implicit solver. If Eq. (63) is to be solved for arbitrary α and damping, the integration scheme E needs to be linearised with respect to the unknown q^{n+1}. The partial derivative of E with respect to q^{n+1} is obtained by

$$\frac{\partial F}{\partial q^{n+1}} = -\frac{M}{\Delta t^2} - \frac{\partial R_F}{\partial q^{n+1}} + \frac{\partial R_F}{\partial q^{n+1}} - \frac{\partial R_{vis}}{\partial q^{n+1}}.$$

(64)

After some calculation using the chain rule, the partial derivative of E can be written as

$$\frac{\partial F}{\partial q^{n+1}} = -\frac{M}{\Delta t^2} - (1-\alpha)K - D.$$

(65)

where

$$K = \bigcup_{el} \int_{\Omega} \left[\partial X^{\text{trans}} : \left(\partial_{FE} \Omega^{n,n+1} \right) \cdot \left(-\partial X^{\text{ele}} \right) + \partial X^{\text{trans}} : \left(\partial_{FF} \Omega^{n,n+1} \right) : \partial X^{\text{trans}} \right] dV,$$

and

$$D = \bigcup_{el} \int_{\Omega} \left[\partial X^{\text{ele}} : \left(\alpha (1-\alpha) \left(\partial_{FP}^{\text{vis}} \right)^{n,n+1} + \frac{\alpha}{\Delta t} \left(\partial_{FP}^{\text{vis}} \right)^{n,n+1} : \partial X^{\text{trans}} \right] dV.$$

(66)

(67)

The linearised system is then given by

$$\left(\frac{M}{\Delta t^2} + \alpha (1-\alpha)K + D \right) \odot \Delta q^{n+1} = F(q^{n+1}).$$

(68)

for given q^{n-1} and q^n, where Δq^{n+1} is the incremental update of the state. A Newton–Raphson scheme can be used with Eq. (68) in order to solve for the unknown quantities q^{n+1} for each time step iteratively. Note that in contrast to M and D, only K has entries being different from zero for electrical degrees of freedom. Therefore, the total matrix of the left hand side of Eq. (68) becomes singular and hence not invertible for $\alpha \to 0$ and $\alpha \to 1$.

Explicit solver. Regarding Eq. (63), $\alpha = 0$ or $\alpha = 1$ implies that $R_F = R_F(q^n)$ and $R_F = R_F(q^n)$. If additionally damping is either not present in the model, or R_D is linear in q^{n+1}, then Eq. (63) can be solved explicitly for the unknown q^{n+1}. Note that Δq^t is always linear in q^{n+1}. Because electrical degrees of freedom have no entry in the mass matrix M, the matrix is singular and cannot be inverted directly. If \underline{q} is split into mechanical degrees of freedom q_F and electrical degrees of freedom q_E, such that

$$\underline{q} = \begin{pmatrix} q_F \\ q_E \end{pmatrix},$$

(69)

the mass matrix can be written as

$$M = \begin{pmatrix} M_F & 0 \\ 0 & 0 \end{pmatrix}.$$

(70)

Assuming that no damping is present and $\alpha = 0$, Eq. (63) can then be solved in two steps

1. $q_F^{n+1} = M_F^{-1} \Delta t^2 \odot R_F^{\text{all}} + 2q_F^n - q_F^{n-1}$ and
2. $q_E^{n+1} : R_E^{\text{all}}(q^{n+1}) = 0,$

where

$$R^{\text{all}} = -R_F + R_E + R_T + R_B - R_Q = \begin{pmatrix} R^{\text{all}}_F \\ R^{\text{all}}_E \end{pmatrix}.$$

(71)
From Eq. (54) it can be seen that R_E is linear in $\partial_E \Omega$. For the material model chosen in this work, compare to Eq. (38), $\partial_E \Omega$ is linear in E and hence q_{E}, such that the second step of the explicit integration scheme can indeed be solved explicitly.

Remark. Applying the splitting technique of Eq. (69) to Eq. (63) and linearising the problem for arbitrary α and damping, the following form is obtained for the second step calculating q_{E}^{n+1}

$$
\Delta q_{E}^{n+1} = K_{EE} \odot \left(\frac{F_{E}}{\alpha (1 - \alpha)} - K_{EF} \odot \Delta q_{F}^{n+1} \right)
$$

(72)

for given Δq_{F}^{n+1} and

$$
K = \begin{pmatrix}
K_{FF} & K_{FE} \\
K_{EF} & K_{EE}
\end{pmatrix}.
$$

(73)

From Eq. (72) it is clear that $\lim_{\alpha \to 0} \Delta q_{E}^{n+1} = \infty$ and $\lim_{\alpha \to 1} \Delta q_{E}^{n+1} = \infty$. This is because there is no electrical inertia in the model. As a result, the general problem with arbitrary α cannot be solved. Therefore, a value of $\alpha = 0.5$ is used for further calculations.

Static solver. In order to obtain an initial guess about the behaviour of the dielectric actuator for a given voltage, the steady state can be obtained by using a static solver. Starting from Eq. (63), the new static state

$$
q = q_{n-1} = q_{n} = q_{n+1}
$$

(74)

is introduced, $P^{vis} = 0$ and Eq. (63) reduces to

$$
F_{\text{static}} = 0 \quad \text{with} \quad F_{\text{static}} = R_{F} + R_{E} + R_{T} + R_{b} - R_{Q}.
$$

(75)

Now, $R_{F} = R_{F}(q)$ and $R_{E} = R_{E}(q)$. Linearising the static problem in q, the following system is obtained

$$
K \odot \Delta q = F_{\text{static}}(q),
$$

(76)

where Δq is the incremental steady state update. This equation can be used with a Newton–Raphson scheme in order to obtain a static solution, as shown in [13]. For large load steps, a damped Newton scheme, respectively, load incrementation is necessary.

5. Numerical examples

The integration schemes discussed in the previous section are implemented as C++ code using the library deal.II [26]. Hexahedral elements with linear shape functions are used for the spatial discretisation of translational as well as electrical degrees of freedom. Eight-point Gauss quadrature is used to solve the spatial integrals. Block sparse matrices allow for minimum memory requirements. Thread based parallelisation using work streams splits the computation of local contributions and the assembly of global quantities into independent processes, resulting in a very efficient code.

Most of the quantities being present when simulating dielectric elastomers differ several orders of magnitude from standard SI-units. For better condition numbers, an alternative unit system is chosen. The base units are given as follows: length in [mm], mass in [g], time in [ms] and current in [A]. The relevant derived units are then given by: work in [mJ], acceleration in [mm/ms²], density in [g/mm³], stress in [MPa], force in [N], permittivity in [F/m], electric field strength in [V/mm], capacity in [mF], charge in [mC] and voltage in [V].

5.1. Material parameters

The silicone used to build dielectric actuators within this project is almost incompressible, therefore the bulk modulus is approximated with a large number of $\kappa = 1000$ MPa. Measurements show that the Young’s modulus can be chosen as $E = 0.7$ MPa [5]. From these two values, the mechanical parameters used in the material model become $\mu = 0.233$ MPa for the shear modulus and $\lambda = 999.8$ MPa. The density is set to $\rho_0 = 1 \cdot 10^{-3} \frac{g}{\text{mm}^3}$.

Next, the electrical parameter c_2 is chosen such that an elastic capacitor with an electrode distance of 10 μm shows about 20% contraction when it is charged with a supply voltage of 100 V. After testing different parameter values, $c_2 = 1 \cdot 10^{-9} \frac{N}{V^2}$ is used for further simulations. Note that the parameter c_1 does not affect the contraction, but only the amount of charge necessary for maintaining a certain voltage. Using the well known formula for the capacity of a rigid plate capacitor with area A, plate distance d and relative permittivity ε_r

$$C = \varepsilon_0 \varepsilon_r \frac{A}{d},$$

(77)

parameter $c_1 = 5 \cdot 10^{-8} \frac{N}{V^2}$ is chosen such that the amount of charge necessary to maintain the applied voltage corresponds to the relative permittivity $\varepsilon_r = 3$ for the used silicone.

5.2. Damping parameter influence

The first example geometry is a cube with an edge length of 2 mm, having its centre in the origin of the global coordinate system. The cube is uniformly split into 512 hexahedral elements, resulting in 729 nodes with a total of 2916 degrees of freedom. Essential boundary conditions are applied as follows: Symmetry requirements are applied to three faces of the cube. Translation along the x-axis is fixed to zero for all nodes located on the yz-plane at $x = -1$ mm. Translation along the y-axis is fixed to zero for all nodes located on the xz-plane at $y = -1$ mm. Translation along the z-axis is fixed to zero for all nodes located on the xy-plane at $z = -1$ mm. The electric potential at the bottom face (xz-plane at $y = -1$ mm) is fixed to zero. The electric potential of the left half of the top surface (xz-plane at $y = 1$ mm for $x < 0$) is fixed to 20 kV.

All nodes, for which no essential electric condition is specified, are initialised with zero. This results in very large electric field intensities between nodes where electric potentials are specified and their close neighbours that are initialised with zero. These initial electric fields lead to large electric stresses during the first time step that cause the geometry to oscillate. To avoid these effects, in a first step, the pure electrical problem is solved for the given boundary conditions by fixing all translational degrees of freedom. The obtained state, to be observed in Fig. 2, is then used as the initial condition for subsequent time integration steps. As the electric field is considered quasi-static, this allows for a consistent initial electric field distribution.

500 time steps with a time step size of $\Delta t = 1 \cdot 10^{-3}$ ms are simulated for the given boundary conditions, resulting in a total simulation time of 0.5 ms. The damping parameter η is varied in a range from 0 to 0.1 $\frac{g}{ms \ mm}$. Two quantities are evaluated. The height of the cube is defined as the distance between material points (-1 mm, -1 mm, 0) and
\((-1 \text{ mm}, 1 \text{ mm}, 0), \text{ projected on the } y\)-axis. The total energy is the sum of the potential energy and the kinetic energy. The potential energy is given by Eq. (22) and can be evaluated directly at time \(t_n\)

\[
P^n = \int_{B_0} \Omega(F^n, E^n) \, dV,
\]
where \(F^n\) and \(E^n\) are obtained by the finite element approximations given in Eq. (41). The kinetic energy is obtained by first evaluating the discrete conjugate momentum \(p\). Then, all entries of \(P\) that are associated with essential boundary conditions are set to zero. Finally, the kinetic energy is obtained by

\[
T = \frac{1}{2} p_F \cdot \left(M^{-1}_F \cdot p_F \right),
\]
where \(p_F\) is the discrete conjugate momentum of translational degrees of freedom.

The discrete conjugate momentum \(p\) is obtained by using a discrete Legendre transform including non-conservative quantities [16]. Here, the momentum is evaluated using information of the current and the previous time step. Thus, the momentum \(p^n\) at time \(t_n\) is given by

\[
p^n = D_2 L_{dd}^{n-1, n} + f_{n-1, n}^n,
\]
with the Lagrange term

\[
D_2 L_{dd}^{n-1, n} = \left\{ \int_{B_0^{el}} \left[\Delta_{\text{trans}}^{\text{trans}} \rho_0 \cdot \Delta_{\text{trans}}^{\text{trans}} \right] \, dV \right. \\
\left. \quad \otimes \frac{g^{n}_{el} - g^{n-1}_{el}}{\Delta t^2} - \int_{B_0^{el}} \left[\partial_{X} N^{\text{trans}}_{el} \cdot \left((1 - \alpha) \partial_F \Omega^{n-1, n} \right) \right] \, dV \right\} \Delta t,
\]
and non-conservative terms

\[
f_{n-1, n} = f_{T}^{n-1, n} + f_{b}^{n-1, n} - f_{Q}^{n-1, n} - f_{\text{vis}}^{n-1, n}
\]
that are evaluated analogously to the Lagrange term.

The simulation results can be observed in Fig. 3. For zero damping, high frequency oscillations are observed. These frequencies are fully damped for small damping values, compare \(\eta = 0.004 \, \frac{\text{g}}{\text{ms mm}}\). Further increase of the damping parameter results in less overall oscillations. For the critical damping value \(\eta = 0.05 \, \frac{\text{g}}{\text{ms mm}}\), overshooting has vanished. If the damping intensity is further increased, the time until the simulation reaches its steady state rises.\(^2\) As all time quantities are of very small order, it is assumed that damping plays a major role in the simulation of dielectric actuators and dominates other dynamic effects.

The energy plot on the right hand side of Fig. 3 confirms the good energy behaviour of the structure preserving integration scheme. For zero damping, the total energy shows minor oscillations, but is not decreasing or increasing overall. Also note that for the critical damping value \(\eta = 0.05 \, \frac{\text{g}}{\text{ms mm}}\), the energy decrease is the quickest.

5.3. Scaling benchmark

The same geometry and boundary conditions as described in the previous section are used to benchmark computational costs for different numbers of elements. The results serve as a cost estimate for future simulations. In the first simulation run, the cube is represented by 8 elements. Then, all elements are split into 8 sub-elements, resulting in a total of 8 times the elements of the previous discretisation. This procedure is repeated several times. In each simulation run 10 time steps are evaluated with a time step size of \(\Delta t = 1 \cdot 10^{-4}\) ms. The damping parameter is set to the large value \(\eta = 0.4 \, \frac{\text{g}}{\text{ms mm}}\), such that each time step requires only 2 Newton iterations for convergence. The simulation is run on single socket compute nodes with Intel Xeon E3-1240 v3 processors (4-core “Haswell”, 3.4 GHz, 8 GB RAM).

\(^2\) See video of simulation: http://dx.doi.org/10.1016/j.cma.2015.10.017.
Fig. 3. Height (left hand side) and total energy (right hand side) of the cube versus time for different damping parameters μ.

Fig. 4. Computational costs of the simulation framework versus the number of finite element cells (left hand side) and the number of degrees of freedom (right hand side).

As seen in Fig. 4, the computational costs scale quite nicely with the number of elements, respectively, the number of degrees of freedom. For systems with more than about 100 elements (or 1000 degrees of freedom), the overhead of initialising the system becomes negligible and the total simulation time, called “wallclock time”, grows linearly with the number of elements. Note that a large system with 262,144 elements and 1,098,500 degrees of freedom takes only about 2.81 h to be evaluated, with the 8 GB of RAM of the compute node still being sufficient.

5.4. Real geometry analysis

A stacked dielectric actuator consists of an array of single actuator elements in a pile-up configuration [7]. The stacked actuator being developed within the project Bionicum is expected to meet the following criteria: cylinder shape, diameter of 1 cm, electrode distance of 10 μm and electrode thickness of 2 μm. These values serve as a basis to create a mesh representing 3 single stacked actuator elements. Each electrode layer is discretised with 5 finite element layers, each layer having a height of $4 \cdot 10^{-4}$ mm. Each insulating silicone layer is discretised with 25 finite element layers as described above. A total of 4 electrodes and 3 separating silicone layers results in 95 finite element layers. For symmetry reasons, only a quarter of the cross section area is modelled. Fig. 5 shows the finite element mesh layer. This layer is extruded orthogonally to reach the height of $4 \cdot 10^{-4}$ mm. The total model consists of 12,825 finite elements and 60,288 degrees of freedom.

Mechanical boundary conditions are applied to meet the symmetry requirements. Moreover, the bottom layer is fixed in height direction. The electrodes are alternately charged with 0 V, respectively, 200 V. The deformed state is evaluated using the static solver. Fig. 6 shows the simulation results. It can be observed that the insulating silicone layers contract and expand in radial direction due to incompressibility. This expansion, however, interferes with the passive behaviour of the electrode layers that do not contract and hence not expand actively. As a result, a waveform in
height direction can be observed on the surface of the stacked actuator. The electrode layers have smaller diameter than the insulating silicone layers. This effect, however, is very small and becomes visible only if the visualised diameter is scaled with a factor of about 100, as shown in Fig. 6 on the left hand side.

5.5. Simplified muscle model

A stacked dielectric actuator of the geometry introduced in Section 5.4 and a length of \(l_0 = 100\) mm consists of thousands of single DEA cells. Discretising the whole muscle with a high resolution finite element mesh as in Section 5.4 results in almost 200,000,000 degrees of freedom—a system too complex for shared memory computations. A model reduction approach allows to reduce the total number of degrees of freedom while still providing accurate results. First, a whole stack of DEA cells is replaced by a single finite element. Then, the Dirichlet conditions for the electric potential are modified such that they lead to similar electric field intensities as the original model [27]. The muscle is discretised with 512 finite elements and 3300 degrees of freedom. It consists of \(n_{lay} = 32\)
finite element layers in length direction. Zero electric potential and the replacement voltage

\[U_{\text{repl}} = U_{\text{orig}} \frac{l_0}{n_{\text{lay}}d} \]

(83)

with the applied voltage \(U_{\text{orig}} \) and electrode distance \(d \) of the original model are applied alternately at the node layers.

Two different sets of mechanical boundary conditions are considered. At first, the bottom muscle face as well as the top muscle face are fixed for all translations such that the muscle is undeformed. The steady-state is simulated using the static solver for voltages ranging between 0 and 200 V. In Fig. 7 on the left hand side, the reaction forces are illustrated with arrows. Note that the electric potential that is actually applied is much larger than 200 V. This results from the replacement voltage given in Eq. (83). On the right hand side of the figure, the quadratic interrelation between the applied voltage and the resulting force can be observed, which is consistent to Eq. (1).

When the top muscle face is released, the muscle contracts. Fig. 8 illustrates the deformed steady state for voltages ranging between 0 and 200 V. The length of the muscle is measured between the centre of the top face and the centre.
of the bottom face. With decreasing total length, the cross section area increases, as the material is incompressible. However, because the bottom face is mechanically fixed, the expansion of the cross section area is locally inhibited.

6. Conclusions

The derived framework for the simulation of dielectric actuators allows for static and dynamic analyses and shows to be robust and efficient. Furthermore, it is able to resolve effects on micro scale, while considering macroscopic models. The introduced material model provides a good compromise between accuracy, complexity and computational costs. Additionally, the generic variational setting of the problem allows for easy implementation of other more complex hyperelastic materials and damping models.

Regarding the limitation of the framework, two points are to be mentioned. First, the influence of air on the electric field around the actuator is not considered by now. Vu et al. show that especially for small dielectric constants like that of silicone, ambient air might have an impact on the electric field and deformation of the material [28,29]. They consider ambient air effects by coupling the boundary element method with the finite element method. Another less complex approach, especially for dynamic simulations, is to add some finite elements around the initial mesh. These additional elements have the mechanical properties of air, while being able to cover electrical effects.

Another limiting point is the fact that only elastodynamic effects are implemented, whereas electrodynamic effects are not considered. The dimensions of common actuators are in the centimetre range. The resulting electrical capacities are very small and electrodynamic effects like the time needed for charging the actuators are negligible. If actuators become larger [6], the distribution of charge with respect to time due to applied voltage can become dominating. In this case, electrodynamic effects have to be considered.

In the long term, the presented model is being used to actuate rigid body systems of humanoid structure. Optimal control theory is then used to optimise the interaction between applied voltage and resulting motion of the kinematic chain.

Acknowledgement

The work of this paper was supported by the Bavarian Environment Agency (LfU) as part of the project Bionicum Forschung.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.cma.2015.10.017.

References

