Variational integration of constrained dynamics on different time scales

Mechanical systems with dynamics on varying time scales, in particular those including highly oscillatory motion, impose challenging questions for numerical integration schemes. Tiny step sizes are required to guarantee a stable integration of the fast frequencies. However, for the simulation of the slow dynamics, integration with a larger time step is accurate enough. Here, small time steps increase integration times unnecessarily, especially for costly function evaluations. For systems comprising fast and slow dynamics, multirate methods integrate the slow part of the system with a relatively large step size while the fast part is integrated with a small time step. In this work, a multirate integrator is derived in closed form via a discrete variational principle on a time grid consisting of macro and micro time nodes. Variational integrators (based on a discrete version of Hamilton’s principle) lead to symplectic and momentum preserving integration schemes that also exhibit good energy behavior. The resulting multirate variational integrator has the same preservation properties. Examples demonstrate the performance of the multirate integrator for constrained multibody dynamics.

Problem formulation

Lagrangian

\[L(q,t) = T(q,v) - U(q) \]

with \(U(q) = V(q) + W(q) \)

- slow potential \(V(q) \), fast potential \(W(q) \)
- constraints \(g(q) = 0 \)

Assumptions:
- separation in slow and fast variables \(q = (q^s, q^f) \)
- fast potential depends on fast variables only \(W = W(q^f) \)

Hamilton’s principle for constrained systems

\[0 = \delta S(q) dt = \delta \int_0^T L(q, \dot{q}) - g(q)^T \cdot \dot{q} dt \]

leads to constrained Euler-Lagrange equations

\[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}} \right) - \frac{\partial T}{\partial q} - \left(\frac{\partial V}{\partial \dot{q}} \right)^T \cdot \lambda = 0 \]

\[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}^f} \right) - \frac{\partial T}{\partial q^f} - \left(\frac{\partial V}{\partial \dot{q}^f} \right)^T \cdot \lambda = 0 \]

\[g(q) = 0 \]

Example: Fermi-Pasta-Ulam problem

- slow variables \(q^s \): location of \(i \)-th stiff spring’s center
- fast variables \(q^f \): length of \(i \)-th stiff spring
- soft spring potential \(V(q) \), stiff spring potential \(W(q^f) \)

Goals

- generate general framework for the simulation of multirate systems
- flexible application w.r.t. goals (e.g. resolve fast dynamics)
- structure preserving simulation (preservation of symmetries and symplecticity)

Variational multirate integrator

macro grid \(\{t_k = k\Delta T \mid k = 0, \ldots, N \} \)

micro grid \(\{t^{\mu}_k = k\Delta T + m\Delta t \mid k = 0, \ldots, N - 1, m = 0, \ldots, p \} \)

- discrete slow variables \(q^s_k = \{q^s_k\}_0^N \) with \(q^s_k \approx q^s(t_k) \)
- discrete fast variables \(q^f_k = \{q^{f,m}_k\}_0^{N-1} \) with \(q^{f,m}_k \approx q^f(t^{\mu}_k) \)
- discrete Lagrange multipliers \(\lambda_k = \{\lambda_k\}_0^N \) with \(\lambda_k \approx \lambda(t^{\mu}_k) \)
- discrete action

\[S_d(q^s_k, q^f_k, \lambda_k) = \sum_{k=0}^{N-1} \left[L_d(q^s_k, q^{f,m}_{k+1}, q^f_k) - h_d(q^s_k, q^{f,m}_{k+1}, q^f_k, \lambda_k) \right] \]

- discrete Lagrangian

\[L_d(q^s_k, q^{f,m}_{k+1}, q^f_k) = T_d(q^s_k, q^{f,m}_{k+1}, q^f_k) - V_d(q^s_k, q^{f,m}_{k+1}, q^f_k) - W_d(q^f_k) \approx \int_{t_k}^{t_{k+1}} L(q, \dot{q}) dt \]

- discrete constraints

\[h_d(q^s_k, q^{f,m}_{k+1}, q^f_k, \lambda_k) \approx \int_{t_k}^{t_{k+1}} g(q)^T \cdot \lambda dt \]

Discrete Hamilton’s principle for constrained systems

\[0 = \delta S_d(q^s_k, q^f_k, \lambda_k) \]

leads to discrete Euler-Lagrange equations for slow variables on the macro grid and fast variables on the micro grid

- quadrature rules of relevant integrals determines actual scheme (combination of implicit and explicit schemes, less function evaluations, less equations to solve for)
- preservation of momentum maps in the presence of symmetries = invariance of discrete Lagrangian (discrete Noether’s theorem)
- preservation of discrete symplectic form

Numerical examples

Fermi-Pasta-Ulam problem

- configuration of first slow and first fast variable. Left: Reference solution computed with variational integrator and time step \(\Delta T = 0.01 \). Middle: Variational integrator with time step \(\Delta T = 0.3 \). Right: Variational multirate integrator with macro time step \(\Delta T = 0.3 \) and micro time step \(\Delta t = 0.01 \).

Triple pendulum

- The Lagrangian is invariant with respect to rotation about the gravitational axis, thus the corresponding angular momentum component is conserved exactly along the trajectory.

Energy in stiff springs (adiabatic invariant) Left: Reference solution computed with variational integrator and time step \(\Delta T = 0.01 \). Middle: Variational integrator with time step \(\Delta T = 0.3 \). Right: Variational multirate integrator with macro time step \(\Delta T = 0.3 \) and micro time step \(\Delta t = 0.01 \).

Properties

- unified variational framework for multirate integration
- quadrature rules can be adapted w.r.t. simulation goals
- existing integrators can be embedded in variational framework
- always symplectic-momentum preserving

References