Muscle paths in biomechanical multibody simulations

Ramona Maas¹, Sigrid Leyendecker¹

¹ Chair of Applied Dynamics, University of Erlangen-Nuremberg {ramona.maas,sigrid.leyendecker}@ltd.uni-erlangen.de

Abstract

When simulating biomechanical motion with multibody systems representing bones and joints, the actuation of those systems can be implemented via Hill-type muscle models. The essential task of these models is to represent the typical force-length and force-velocity relation of real muscles, hence the muscle length, the contraction velocity and the force direction of every muscle has to be provided in every time step of a dynamical simulation. This work concerns the question, how to approximate the muscle path during a dynamical simulation such that its dynamically changing behaviour is represented, while the computational effort is kept in a reasonable range, allowing the application within optimal control simulations of biomechanical motion. We show the implementation of such an algorithm in an optimal control simulation framework for biomechanical systems like the human arm by augmenting a discrete mechanics and optimal control formulation called DMOCC, which benefits from the usage of a variational integrator and therefore guarantees structure preserving simulation results.

Keywords: Biomechanics, optimal control, Hill-type muscle model, dynamical muscle path, DMOCC, structure preserving integration

1 Introduction

In the area of biomechanical simulations, one generally distinguishes between experimentally based methods, such as motion capturing and the computer animation methods, see [1] and physics based approaches which are e.g. extensively discussed in the context of human walking simulations in [2]. A frequently used approach is to formulate and solve an optimal control problem in order to find an optimal sequence of joint torques or muscle activities and configurations that minimises a physiologically motivated criterion such that the equations of motion (and further constraints on the problem) are fulfilled [3, 4, 5, 6]. We follow this approach and use a direct transcription method called DMOCC [7]. As DMOCC is based on the discretisation of the variational structure of the mechanical system, certain characteristics of the real system, like for example angular momentum consistency, are inherited to the discrete system. This yields the benefit that all actuating torques and muscle forces are exactly transferred into motion of the system, which clearly distinguishes this method from other optimal control simulations.

The actuation of multibody systems via muscle models is a common field of interest, see for example [8, 9, 10, 11, 12, 13, 14, 15] to mention just a few. Therefore we augment DMOCC to examine the optimal control of muscle actuated human arm motion by implementing muscle actuations of the seven most important elbow muscles into the optimisation variables, replacing the joint torque actuation of the elbow. Like in most biomechanical simulations, both the muscle length and the force directions at the insertion points of the muscles around the elbow are particularly related to the joint angle. Several studies therefore use an alterable number of artificial ‘via’ points or ‘wrapping’ points to relate the muscle path to the joint angle [16, 17]. The determination of such artificial points requires a lot of anatomical knowledge, which is not yet available for all biomechanical structures and the results are quite sensitive to the location of such points. Further on, a dynamical sliding of muscle paths around a joint during a dynamical simulation can not be represented with this approach.

In our work, we assume that a muscle tone is always present, even at rest (see for example [18]), which leads to the conclusion that tendons and muscles are supposed to follow the path of minimal distance between two insertion points, while not intersecting the bones. We first illustrate a possibility to find this path by minimising the length of a tendon/muscle path between two insertion points over a joint, such that the path does not intersect the bodies, similar to the ESM method presented for example in [19]. Solving this problem yields an approximation to the length of the muscle path. The force direction at the insertion points is given via the normalised direction of the first and the last element. However, using an optimisation procedure like this during forward dynamics or optimal control simulations leads to several problems. First...
of all, the computation is very expensive, as for every muscle in every time step such an optimisation procedure has to be executed. Secondly, analytical gradients for optimal control simulations are difficult to calculate, since the muscle length is the solution of a parameter dependent optimisation.

We intend to reduce computational effort in finding the path of minimal length around bodies and joints with an algorithm that determines this path as a G1 (geometrical) continuous combination of straight lines (wherever possible, i.e. whenever the straight line does not intersect the bodies or joints) and helices, in a similar way as shown in [19] for a sphere-cylinder coupling. Note that G1-continuously joined curves share tangential directions, while the length of the tangent vectors might differ. Thus, the length of the muscle path can directly be calculated as the sum of the length of the single parts and the force direction is given via the tangent vector at the insertion point. The simulation time can be significantly reduced by using this analytical algorithm, whereas the resulting force direction and path length are comparable to those obtained via optimisation. However, for certain rigid body configurations, the problem of finding the minimal path cannot be solved analytically. Here we use the best fitting path from those tested before, which can be solved within a reasonable amount of computation time.

During the next section, we briefly explain the DMOCC method and the structure preserving integration. Further on, the rigid body model is introduced together with the implementation of Hill-type muscle forces. After that we illustrate the dynamical muscle path algorithm and some examples comparing optimisation results to the analytical procedure are depicted. In Section 3, we concentrate on numerical optimal control examples of lifting the human arm. Here, we first show the consequence of using a dynamical muscle path compared to a direct line muscle connection while secondly a point mass is added to the center of mass of the hand to evaluate if the model yields consequent results for weight lifting.

2 Discrete mechanics and optimal control of muscle actuated motions

In this work, we aim at finding local solutions of a nonlinear optimal control problem which consists of minimising a given discrete objective function subject to constraints that describe the dynamics of the system. We therefore use a method called DMOCC (see [7] for further details), which is based on the discretisation of the variational principle directly to derive the discrete equations of motion and therefore guarantees structure preserving simulation results.

2.1 The discrete optimal control problem

For multibody systems connected via joints and discretised with a constant time step \(\Delta t \in \mathbb{R} \) there exists an infinite number of possible trajectories and force fields to perform a motion from a predefined start configuration \(q(t_0) = q_0 \) and conjugate moment \(p(t_0) = p_0 \) to a given end configuration \(q(t_N) = q_N \) and conjugate momentum \(p(t_N) = p_N \). One possibility to treat this, is to formulate and solve an optimal control problem as illustrated in (1) and to use an appropriate discrete objective \(J_d \), or respectively a discrete cost function \(C_d \), to find a trajectory and force field that minimise this objective. Herein, the discrete generalised coordinates \(u_d = \{ u_{n} \}_{n=0}^{N} \), the generalised joint torques \(\tau^J_d = \{ \tau^J_{n} \}_{n=0}^{N} \) and the sequence of muscle activities \(A_d = \{ A_{n} \}_{n=0}^{N-1} \) are the optimisation variables. At the same time, the discrete equations of motion (3) and boundary conditions (for example to perform a rest-to-rest manoeuvre \(p_0 = p_N = 0 \)) must be fulfilled. There may be further constraints like bounds on the optimisation variables and path constraints (equality or inequality), e.g. to set limits on the joint angles according to anatomical restrictions.

\[
\min_{u_d, \tau^J_d, A_d} J_d(u_d, \tau^J_d, A_d) = \min_{u_d, \tau^J_d, A_d} \sum_{n=0}^{N-1} C_d(u_n, u_{n+1}, \tau^J_{n}, A_{n})
\]
subject to:
1. fulfilment of the discrete equations of motion (3)
2. initial and final conditions
3. path constraints

Within this work, we concentrate on an objective function that minimises the changes in joint torques together with the changes in muscle activities, as this criterion yields relatively realistic motions for arm lifting (see [20]).

\[
J_d(u_d, \tau^J_d, A_d) = \frac{1}{2} \Delta t \sum_{n=1}^{N-2} \left[\omega_1 \left\| \left(\frac{\tau^J_{n+1} - \tau^J_n}{\Delta t} \right) \right\|^2 + \omega_2 \left\| \left(\frac{A_{n+1} - A_n}{\Delta t} \right) \right\|^2 \right]
\]

Herein, the weighting factors \(\omega_1, \omega_2 \in \mathbb{R} \) ensure that the influence of torques and activities on the value of the cost function are in the same order of magnitude.
2.2 Symplectic momentum preserving discrete dynamics

The dynamics of time-continuous mechanical systems is commonly described by Lagrangian mechanics. Usually the discretisation takes place at the level of the continuous equations of motion. In contrast to that, we use a variational integrator (see [21]) where a time stepping scheme is derived from a discrete variational principle. Consequently, it inherits the structure preserving characteristics of the real system [22]. Hence, the discrete system shows consistency of momentum maps and symplecticity. Further on, no artificial loss or gain in total energy of the system can be noticed even for long simulation periods.

Consider a k-dimensional forced mechanical system, then the configuration variable \(q : [t_0, t_N] \to \mathbb{R}^k \) at \(t_n = t_0 + n \Delta t \) is approximated via \(q_d : \{ t_0, t_0 + \Delta t, \ldots, t_0 + N \Delta t = t_N \} \to \mathbb{R}^k, N \in \mathbb{N} \) with \(q_n = q_d(t_n) \). Let the system be constrained by \(m \) constraints resulting from the rigid body formulation and the joints in between the bodies. For the Jacobian of the constraints, \(G_d(q_n) = \Delta qG(q_n) \) is used in the discrete case, while the discrete Lagrangian \(L_d : \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R} \) approximates the action during one time step \(\Delta t \). Further on, the system is actuated by the discrete generalised forces in the joints \(\tau_d^j = (\tau_d^j)_{n=0}^{N-1} \) and discrete muscle forces \(\tau_m^m = (\tau_m^m)_{n=0}^{N-1} \). With these approximations and \(D_1, D_2 \) indicating the differential operators with respect to the first and second argument of \(L_d \), the discrete equations of motion of the problem are given by

\[
P^T(q_n) \cdot [D_2 L_d(q_{n-1}, q_n) + D_1 L_d(q_n, F_d(u_{n+1}, q_n)) + f^+_n + f^-_n] = 0
\]

(3)

where \(P(q_n) \in \mathbb{R}^{k \times (k-m)} \) denotes the discrete nullspace matrix (for further details see [23]). Due to the premultiplication with \(P^T(q_n) \) and the nodal reparametrisation \(q_n = F_d(u_n, q_{n-1}) \) with \(g(q_n) = g(F_d(u_n, q_{n-1})) = 0 \), the size of the system is \(k - m \), which is the minimal possible size. The discrete force \(f^+_n \) denotes the effect of the generalised joint force \(\tau_n^j \) and muscle force \(\tau_m^m \) acting in the time interval \([t_n, t_{n+1}]\) on \(q_n \), while \(f^-_n \) is coming from the effect of \(\tau_n^j \) and \(\tau_m^m \) acting in \([t_n, t_{n+1}]\) on \(q_n \).

For muscle forces, these discrete forces can be calculated from

\[
f^+_n = \frac{N}{2} B^T(q_n) \cdot \tau_n^m = \frac{N}{2} B^T(q_n) \cdot F_m^{m-1}(q_{n-1}, q_n) \tau_n^m
\]

(4)

\[
f^-_n = \frac{N}{2} B^T(q_n) \cdot \tau_n^m = \frac{N}{2} B^T(q_n) \cdot F_m^m(q_n, q_{n+1}) \tau_n
\]

(5)

Herein, the matrix \(B(q_n) \) contains the lever arms and assigns the forces to the bodies. The replacement of the muscle forces \(\tau_m^m \) by \(F_m^m \) is explained in (7).

2.3 Rigid body model of the human arm with muscle actuation in the elbow

For the simulation of typical human arm movements, we represent the arm as a kinematic chain, consisting of three bodies connected via three joints as shown in Figure 1. The shoulder is fixed in space in a point \(X_G \in \mathbb{R}^3 \). The upper arm and the forearm are modelled as cylinders with different radii, a spherical joint represents the three degrees of freedom in the shoulder, while cardan joints with two degrees of freedom and different rotation axes account for the movement abilities in the elbow and the wrist. The location and orientation of the rigid bodies in space is given by a displacement vector \(\varphi \in \mathbb{R}^3 \) to the center of mass of a body and an orthonormal body frame \([d_1 \ d_2 \ d_3] \in \mathbb{R}^{3 \times 3} \) located in the center of mass. The motion of the elbow is actuated by Hill-type muscles.

We therefore implement the seven most important muscles around the elbow with muscle data according to [16, 24], which has to be changed slightly to ensure that the \(f_1 \) and \(f_2 \) values stay in a reasonable range, as described in Section 2.4. In Figure 1, the paths of these muscles around the elbow are shown. Herein, the black nodes are check points to ensure that the calculated path does not intersect the rigid bodies.

Triceps (TRI) and Biceps (BIC) are the most commonly known muscles, which are depicted in red and green in the example. They contribute to flexion and extension of the elbow, together with the brachialis muscle (BRA, depicted in cyan). Musculus supinator (SUP, blue) and pronator teres (PT, black) are mostly responsible for supination (palm up) and pronation (palm down) movements. Additionally, the musculus extensor carpi radialis longus (ECRL, yellow) and the musculus brachioradialis (BRD, magenta) contribute to elbow motion.
2.4 Nonlinear Hill-type muscle actuation

In biomechanical simulations, the actuation by joint torques is often replaced by Hill-type muscle forces ([25]), enabling the possibility to draw physiological conclusions from the simulations, see for example [8, 9, 10, 11].

Such models typically consist of an active contractile component (CC) surrounded by one or more serial elastic (SEC) or parallel elastic (PEC) components. Often, those models are used within commercial software packages, like for example Matlab/Simulink where common integrators based on discretising the equations of motion are implemented. In [26] it is shown for a typical Hill-type model with three components that there can be a significant difference in the results, when using the introduced structure preserving variational integrator in the context of muscle actuated motions. During this study, the focus is on a Hill-type muscle model with one parallel elasticity, see Figure 2. Here, the scalar force amount of the muscle force $F^m_n \in \mathbb{R}$ in a time interval $[t_n, t_{n+1}]$ can be calculated as the sum of the scalar forces produced by the contractile component and the parallel component via $F^m_n = F^{CC}_n + F^{PEC}_n$. Assuming the parallel elasticity of the muscle to be proportional to the length of the muscle element $l^m \in \mathbb{R}$ with the proportionality constant $k_p \in \mathbb{R}$ yields

$$F^m_n = (f_1)_n (f_v)_n A_n F_{\max} + k_p l^m_n$$

(6)

where $f_1(l^m) \in [0, 1]$ is a function describing the force length relation of the muscle and $f_v(v_M) \in [0, 1.4]$ represents the Hill-hyperbola like force-velocity relation, $A \in [0, 1]$ is the activity of the muscle and $F_{\max} \in \mathbb{R}$ is the maximal possible muscle force. The contraction velocity of the muscle is approximated via $v^m_n = \frac{l^m_{n+1} - l^m_n}{\Delta t}$. The muscle force τ^m_n acting on the body is given by the product of the scalar force value and the force direction $r_n \in \mathbb{R}^3$.

$$\tau^m_n = F^m_n r_n$$

(7)

The force-length relation of the muscle model in (6) is specified via a function $f_1(l^m)$

$$f_1(l^m) = \begin{cases} -1 \frac{(l^m - l_{opt})^2}{(l_{opt} - l_1)^2} + 1 & \text{if } l_1 < l^m < 2l_{opt} - l_1 \\ 0 & \text{else} \end{cases}$$

where l_{opt} is the optimal muscle length yielding $f_1 = 1$. By adapting the muscle parameters $l_{opt} \in \mathbb{R}$ and $l_1 \in \mathbb{R}$ to the geometry of our model, it is ensured that f_1 is mostly in the parabolic part. The force-velocity behaviour of a muscle is modelled with the typical Hill-hyperbolic relation.

$$f_v(v^m) = \begin{cases} v^m_{\max} - v^m & \text{if } v^m > 0 \\ \frac{v^m_{\max} + v^m}{\gamma} & \text{if } v^m = 0 \\ \frac{B_1}{v^m_{\max} - B_2} + B_3 & \text{if } v^m \leq 0 \end{cases}$$

containing the maximal possible contraction velocity of a muscle $v^m_{\max} \in \mathbb{R}$, which has to be determined experimentally. For the lack of experimental data here, we use a value of v^m_{\max} being $2 l_{opt}$ per second to keep the f_v value in a realistic range. The curvature of the concentric part is described with the muscle related constant parameter $\gamma \in \mathbb{R}$ adapted from [10, 26], whereas the eccentric part is described by a mirrored hyperbola, with experimentally determined constant parameters $B_1, B_2, B_3 \in \mathbb{R}$ (see [12]).

2.5 Dynamical muscle path

Assuming that the muscles and tendons are always under tension, they are supposed to follow the path of minimal distance between two insertion points. This approach includes effects like dynamical sliding of the muscles around joints and bodies during a motion.
2.5.1 Optimal muscle path

One possibility to find this path is to minimise the length of a muscle path between two insertion points over a joint, so that the path does not intersect the n_b bodies K_j, $j = 1, \ldots, n_b$. Let the path of a muscolotendon complex be discretised with $n_e + 1$ elements with the element length l_e. We get n_e nodes $E_i \in \mathbb{R}^3$ between the insertion points $p_1 \in \mathbb{R}^3$ and $p_2 \in \mathbb{R}^3$, which are summarised in the optimisation variable $E = [E_1, E_2, \ldots, E_{n_e}] \in \mathbb{R}^{3n_e}$. The constrained optimisation problem reads

$$
\min_{E} l_m = \min_{E} \left[\|p_1 - E_1\| + \|E_{n_e} - p_2\| + \sum_{i=1}^{n_e-1} \|E_i - E_{i+1}\| \right]
$$

so that:
- $E_i \notin K_j$ for $j = 1, \ldots, n_b$
- $l_{e_{\min}} < l_e < l_{e_{\max}}$ for $i = 1, \ldots, n_e + 1$

As an initial guess, the direct connection between p_1 and p_2 is discretised with $n_e + 1$ elements, which is the minimal possible distance when neglecting the constraints.

To ensure that the nodes stay outside the bodies, we constrain the distance between each element node E_i and the longitudinal axis of the bodies to stay larger than the radii of the cylinders r_1, r_2 and joints r_J. The fulfilment of these inequality constraints is checked via the algorithm illustrated in Table 1. Here, l_1 and l_2 denote the longitudinal length of the two cylinders, respectively. Additionally, the length of the elements has to stay between certain boundaries, as denoted in (8).

<table>
<thead>
<tr>
<th>Table 1. Algorithm 1 determines whether a muscle path intersects the bodies.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- straight lines through longitudinal axis of bodies $x = \varphi_1 + \lambda_1 d_3^1$ $x = \varphi_2 + \lambda_2 d_3^2$</td>
</tr>
<tr>
<td>- planes through E_i with normal vectors equal to direction of straight lines $(x - E_i)^T \cdot d_3^1 = 0$ $(x - E_i)^T \cdot d_3^2 = 0$</td>
</tr>
<tr>
<td>- calculating λ_1 and λ_2 via insertion $\lambda_1 = (E_i - \varphi_1)^T \cdot d_3^1$ $\lambda_2 = (E_i - \varphi_2)^T \cdot d_3^2$</td>
</tr>
<tr>
<td>- limit cases if $\lambda_1 > l_1$ $\lambda_1 = l_1$, if $\lambda_1 < -l_1$ $\lambda_1 = -l_1$ if $\lambda_2 > l_2$ $\lambda_2 = l_2$, if $\lambda_2 < -l_2$ $\lambda_2 = -l_2$</td>
</tr>
<tr>
<td>- distance between longitudinal body axes and node / distance between joint center and node $x_{e_1} = \varphi_1 + \lambda_1 d_3^1$ $d_1 = |x_{e_1} - E_i|$ $x_{e_2} = \varphi_2 + \lambda_2 d_3^2$ $d_2 = |x_{e_2} - E_i|$ $x_{e_3} = J_2$ $d_3 = |x_{e_3} - E_i|$</td>
</tr>
<tr>
<td>- inequality constraints for each node E_i $[r_1 - d_1, r_2 - d_2, r_J - d_3] < 0$</td>
</tr>
</tbody>
</table>

2.5.2 Analytical path procedure for smooth bodies and joints

The length of the muscle path and the direction at the insertion points is needed during forward dynamics and optimal control simulations. Using an inner optimisation procedure, as described in the previous section, to find this path leads to several problems.

First, the calculation is very expensive. Note that within an optimal control simulation, this path calculation has to be executed in every function call, for every muscle and in every time step. Say we calculate with 7 muscles, one function call of the optimal control simulation includes 20 time steps, and the optimal control procedure needs 100000 function calls – then this yields a total number of 1.4 million inner optimisations.

Secondly, analytical gradients for optimal control simulations are difficult to calculate, since the muscle length and force directions are then the solution of a parameter dependent optimisation with the parameters being related to the actual configuration.
Table 2. Algorithm 2 determines the muscle path around smooth bodies and joints analytically.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Step 1** | Test whether a direct line between the insertion points p_1 and p_2 exists, that does not intersect the bodies or the joints (using algorithm 1). If yes: direct line is the shortest possible path.
 Else: go to step 2. |
| **Step 2** | Test whether $p^*_2 \in K_2$ exists, such that
 - A direct line from p_1 to p^*_2 exists that does not intersect the bodies or the joints.
 - The transition between the direct line from p_1 to p^*_2 and the helix from p^*_2 to p_2 is continuous.
 If yes: line-helix combination is the shortest possible path.
 Else: go to step 3. |
| **Step 3** | Test whether $p^*_1 \in K_1$ exists, such that
 - A direct line from p^*_1 to p_2 exists that does not intersect the bodies or the joints.
 - The transition between the direct line from p^*_1 to p_2 and the helix from p_1 to p^*_1 is continuous.
 If yes: helix-line combination is the shortest possible path.
 Else: go to step 4. |
| **Step 4** | If each of the previously tested connections intersects the bodies:
 Take the connection which least intersects the bodies. |

Due to the presence of mostly smooth bodies and joints like cylinders and spheres in the model, we can make use of known analytical descriptions of shortest paths on and around the surface of these bodies and combine them with simple logical considerations. If a direct line between to insertion points p_1 and p_2 does not intersect the bodies or the joints, this is the path of minimal length. Further on, if a direct connection between the two points intersects the bodies or joints, we know that the shortest path on the surface of a cylinder is a helix given by

$$x_h(t) = \varphi + \begin{bmatrix} d_1 & d_2 & d_3 \end{bmatrix} \cdot \begin{bmatrix} r \cos(2\pi t_h) \\ r \sin(2\pi t_h) \\ h t_h + c \end{bmatrix} \quad (9)$$

where $\varphi \in \mathbb{R}^3$ is a displacement vector to the center of mass of the cylinder, $\begin{bmatrix} d_1 & d_2 & d_3 \end{bmatrix}$ is an orthonormal body frame representing its orientation in space, $t_h \in [0, 1]$ is the parameterisation variable of the helix, $r \in \mathbb{R}^+$ is the radius of the cylinder, $h \in \mathbb{R}$ is the pitch and $c \in \mathbb{R}$ is a parameter for a displacement in longitudinal direction.

With this we can economise computational effort in finding the path of minimal length around bodies and joints with the algorithm illustrated in Table 2. In the different steps of the algorithm, several calculations have to be executed, which are explained below.

Step 1 The algorithm shown in Table 1 can be used to test if the direct line intersects bodies and joints. If this is not the case, the direct line is taken as muscle path, with the length l^m and the force directions $r^{m,1}$ and $r^{m,2}$ on the first and second body’s insertion points, respectively.

$$l^m = \| p_2 - p_1 \|, \quad r^{m,1} = \frac{p_2 - p_1}{\| p_2 - p_1 \|}, \quad r^{m,2} = \frac{p_1 - p_2}{\| p_2 - p_1 \|} \quad (10)$$

Figure 3. Example of typical muscle paths around the elbow: the analytical line-helix solution (top) and the solution of a 30 node optimisation (bottom).
step 2 Suppose that the path of the muscle is redirected around smooth bodies, the path of this muscle is required to be G1-continuous, i.e. the tangent vectors at the transition between line and helix need to have the same direction, while their length may differ. If the muscle path starts for example on the front side of a cylinder in \(\mathbf{p}_1 \) and ends at the back side of another one in \(\mathbf{p}_2 \), the path is a combination of a direct line form \(\mathbf{p}_1 \) in direction to the second cylinder’s front and a helix from front to back of the second cylinder ending at \(\mathbf{p}_2 \). Demanding the transition between the direct line and the helix to be G1-continuous, a transition point \(\mathbf{p}_2^* \) can be calculated. Let the equation of a direct line between the insertion point \(\mathbf{p}_1 \) and the transition point \(\mathbf{p}_2^* \), as well as its derivation with respect to its parametrisation variable \(t_g \), be given by

\[
\begin{align*}
x_g(t_g) &= \mathbf{p}_1 + t_g(\mathbf{p}_2^* - \mathbf{p}_1) \\
x'_g(t_g) &= \mathbf{p}_2^* - \mathbf{p}_1 \quad (11)
\end{align*}
\]

Note that due to G1-continuity, a normalisation of the direction vector of the straight line is not necessary. The helix on the second cylinder can be described as illustrated in (9). At the insertion point \(\mathbf{p}_2 \) on the second cylinder, this yields

\[
x_h(t_{h_0}) = \varphi_2 + \mathbf{R}^2 \cdot \begin{pmatrix} r_2 \cos(2\pi t_{h_0}) \\ r_2 \sin(2\pi t_{h_0}) \\ h_2 \cdot t_{h_0} + c_2 \end{pmatrix} = \mathbf{p}_2 \quad (12)
\]

with \(\mathbf{R}^2 = [d_1^2 \ d_2^2 \ d_3^2] \). This leads to the parameter \(t_{h_0} = \frac{1}{2\pi} \arctan2(a_2, a_1) \) at the helix end point \(\mathbf{p}_2 \)

with \(\mathbf{a} = [a_1, a_2, a_3]^T = (\mathbf{R}^2)^T \cdot (\mathbf{p}_2 - \varphi_2) \), and \(c_2 = a_3 - h_2 t_{h_0} \). At \(\mathbf{p}_2^* \), the helix starts with \(t_{h_0} \) and we get a tangent vector

\[
x_h(t_{h_0}) = \varphi_2 + \mathbf{R}^2 \cdot \begin{pmatrix} r_2 \cos(2\pi t_{h_0}) \\ r_2 \sin(2\pi t_{h_0}) \\ h_2 \cdot t_{h_0} + c_2 \end{pmatrix} = \mathbf{p}_2^* \quad (13)
\]

To ensure a G1-continuous transition, the cross product of the tangent vector of the direct line (11) and the helix in point \(\mathbf{p}_2^* \) (13) has to vanish.

\[
\mathbf{R}^2 \cdot \begin{pmatrix} -2\pi r_2 \sin(2\pi t_{h_0}) \\ 2\pi r_2 \cos(2\pi t_{h_0}) \\ h_2 \end{pmatrix} \times (\mathbf{p}_2^* - \mathbf{p}_1) = 0 \quad (14)
\]

Inserting (13), the third row of this cross product finally yields

\[
-r_2 = a_2^1 \sin(2\pi t_{h_0}) + a_1^1 \cos(2\pi t_{h_0}) \quad (15)
\]

with \(\mathbf{a}_1 = [a_1^1, a_2^1, a_3^1]^T = (\mathbf{R}^2)^T \cdot (\mathbf{p}_2 - \varphi_1) \). Depending on the direction of the helix and the sign of \(a_1^1 \) and \(a_2^1 \), we can summarise \(\sin(2\pi t_{h_0}) \) and \(\cos(2\pi t_{h_0}) \) using the addition theorem into one trigonometric function and solve for \(t_{h_0} \). Altogether, we get eight solutions, all of the form (16), only differing in \(\arcsin \) or \(\arccos \), the sign of their argument, the sign before \(\arctan \) and the ordering of its arguments.

\[
t_{h_0} = \frac{1}{2\pi} \arccos \left(\frac{-r_2}{\sqrt{(a_1^1)^2 + (a_2^1)^2}} \right) + \arctan2 \left(a_2^1, a_1^1 \right) \quad (16)
\]

Inserting \(t_{h_0} \) in the first row of the cross product, we get

\[
h_2 = \frac{-2\pi r_2 \cos(2\pi t_{h_0}) (a_3 + a_1^1)}{2\pi r_2 \cos(2\pi t_{h_0}) (t_{h_0} - t_{h_N}) - a_2^1 - r_2 \sin(2\pi t_{h_0})} \quad (17)
\]

With \(t_{h_0} \) and \(h_2 \) in (13) we get eight solutions for \(\mathbf{p}_2^* \), from which the geometrically correct one can be found by choosing the points that truly yield a connection tangential on the cylinder surface and by selecting the one closest to the direct line between \(\mathbf{p}_1 \) and \(\mathbf{p}_2 \).

The algorithm shown in Table 1 can then be used to test whether the direct line from \(\mathbf{p}_1 \) to \(\mathbf{p}_2^* \) intersects bodies and joints. In case the direct line does not intersect the bodies, the length of the muscle path and the force directions can be calculated via

\[
l^m = ||\mathbf{p}_2^* - \mathbf{p}_1|| + 2\pi r_2 \left| t_{h_N} - t_{h_0} \right| \sqrt{1 + \left(\frac{h_2}{2\pi r_2} \right)^2} \quad (18)
\]
\[r^{m,1} = \frac{p_2^* - p_1}{\|p_2^* - p_1\|}, \quad r^{m,2} = -R^2 \cdot \left(\frac{-2\pi r_2 \sin(2\pi t_{h_N})}{2\pi r_2 \cos(2\pi t_{h_N})} \right) h_2 \]

step 3 If the line-helix connection intersects the bodies, a vice-versa helix-line connection is tested. Here, a point \(p_1^* \) is searched such that the transition between a helix from \(p_1 \) to \(p_1^* \) and a direct line from \(p_1^* \) to \(p_2 \) is \(C^1 \)-continuous. Following the procedure in step 2, the cross product of the tangent vectors in point \(p_1^* \) has to vanish.

\[R^1 \cdot \left(\frac{-2\pi r_1 \sin(2\pi t_{h_N})}{2\pi r_1 \cos(2\pi t_{h_N})} \right) \times (p_2 - p_1^*) = 0 \]

with \(R^1 = [d_1^1 \ d_2^1 \ d_3^1] \). The point \(p_1^* \) is the end point of the helix on the first body at \(t_{h_N} \) which, when inserted into (20), yields from the third line of the cross product

\[r_1 = a_1^2 \sin(2\pi t_{h_0}) + a_1^2 \cos(2\pi t_{h_0}) \]

with \(a^2 = [a_1^2 \ a_2^2 \ a_3^2]^T = (R^1)^T \cdot (p_2 - \varphi) \). Similar to the procedure in step 2, we can solve for \(t_{h_N} \) and \(h_1 \), which finally leads to \(p_1^* \). Again, the algorithm shown in Table 1 can be used to test if the direct line from \(p_1^* \) to \(p_2 \) intersects bodies and joints. If this is not the case, the length of the muscle path and the force directions can be calculated via

\[l^m = \|p_2 - p_1\| + 2\pi r_1 |t_{h_N} - t_{h_0}| \sqrt{1 + \left(\frac{h_1}{2\pi r_1} \right)^2} \]

\[r^{m,1} = R^1 \cdot \left(\frac{-2\pi r_1 \sin(2\pi t_{h_0})}{2\pi r_1 \cos(2\pi t_{h_0})} \right), \quad r^{m,2} = \frac{p_1^* - p_2}{\|p_1^* - p_2\|} \]

step 4 In case that non of the above presented paths does not intersect the bodies or if (21) or (15) or both of them do not have a solution in \(\mathbb{R} \), the muscle path is approximated as that one least intersecting the bodies. As a criterion to compare the amount of intersection of different paths, the maximal intersection is weighted by the length of the direct line part. Of course this is a strong simplification, but these cases only rarely occur for relatively large pronation-supination joint angles. Nevertheless, the algorithm is to be included in an optimal control framework, where unrealistic body configurations may occur during the iterations. We therefore have to guarantee that it is running robustly even for unrealistic body configurations.

Remark An alternative in step 4 is for example a root-finding algorithm as illustrated in [27] to solve the upcoming equations for a helix-line-helix or a helix-orthodrome-line-helix connection. Or one could formulate an optimisation problem and search for the optimal transition point such that the length of the helix and line parts is minimised. However, all of this further approaches yield far to high computational effort when implemented in an optimal control procedure. Furthermore, such formulations depend on initial guesses and choosing them, such that the optimal control simulation is running robustly, is an additional issue. Moreover, derivations of muscle length and force direction with respect to the configuration of the bodies are needed to compute analytical gradients of the optimal control problem. While a root-finding algorithm can be differentiated with an implicit function theorem, the derivations of the optimal control procedure are not easy to achieve when muscle length and force direction are the result of a parameter dependent optimisation.

3 Numerical Examples

In this chapter, we present some numerical examples of optimal control problems for lifting the human arm. Within these examples, we use a cost function which minimises the change in activities of the muscles and the joint torques in shoulder and hand, see (2). In particular, we investigate the influence of the dynamical muscle path on the resulting optimal trajectories by comparison to the results when using direct line connections for the muscle path. Comparable aspects as well as deviations are discussed and main reasons for the differences are presented. In the second example, a point mass is added to the center of mass of the hand to represent a weight lifting motion. Therewith, a numerical verification of the overall model behaviour is possible. However, certain limits of the model become apparent, like for example the simplified representation of the elbow mechanics not including ulnar and radius, and the representation of muscle insertions as point insertions instead of more realistic planar insertions.
3.1 Lifting the arm – the influence of dynamical muscle path on optimal control simulations

As a simple example, the lifting motion of a human arm from a mostly outstretched initial configuration, with the forearm neutral pronation-supination position, to a final end configuration with flexed elbow, where only the position of the hand’s center of mass is prescribed to be at the initial height of the upper arm’s center of mass, is investigated. We simulate a rest-to-rest manoeuvre, i.e. the initial and final momentum of the system are constrained to \(p_0 = p_N = 0 \). The total simulation time is \(t_N = 0.52 \) s discretised with a time step of \(\Delta t = 0.02 \) s.

The problem is formulated with different approaches on the muscle path. First, a direct line connection between the muscle insertion points is used and finally compared to a dynamical muscle path approach. The difference in muscle length evolution over time for the two muscle path approaches is illustrated in Figure 5. Obviously, the elongation of the extensor muscles (TRI and ECRL) is not represented correctly when using a direct line connection, since the path is in this case not redirected around the joint. With the dynamical muscle path, the elongation of the extensor muscles during this motion is visible. Likewise comparing the two approaches, the PT muscle and the SUP muscle show a different behaviour at the end of the motion. Only for the BRD muscle both muscle path approaches yield a similar length evolution.

Further on, the resulting muscle forces and muscle activities are shown in Figure 6. The direct line approach yields in this example constant muscle activity of mainly the PT muscle, while for the dynamical muscle path approach we get a larger diversity of active muscles, which is typical for biomechanical motions.

Yet another main difference between both approaches becomes clear when investigating the occurring muscle force directions. As the force directions are unit vectors, they can be represented as points on a unit sphere, which is exemplarily shown for the PT muscle in Figure 7. Note that the time evolution of the force directions is highlighted via the color of the points. The direction of the force acting on the upper arm is plotted from red (\(t = t_0 \)) to yellow (\(t = t_N \)), while the direction of the force acting on the forearm is depicted from blue (\(t = t_0 \)) to green (\(t = t_N \)). While the direct line approach naturally leads to force directions that lie mirror-inverted on this unit sphere (see left hand part of Figure 7), the dynamical path around the joints yields asymmetric force directions on both bodies and both force directions substantially differ from those generated with the direct line approach. This is a key difference to the direct line approach, with which an asymmetric behaviour, representing the sliding of the muscle around the bodies and joints, cannot be represented.

3.2 Weight lifting

Lifting a weight is a well known everyday motion. We therefore add a point mass of 2 kg, 5 kg and 10 kg to the hand’s center of mass within the second example, while the same initial and final conditions as described in Section 3.1 are present. In Figure 8, snapshots of the resulting motions are illustrated. When adding a point mass of 2 kg (left hand part of Figure 9), we can see that the activities and muscle forces are considerably increasing compared to Figure 6 and the
muscles performing the motion are similar to those used without additional mass (see right hand part of Figure 6). PT and SUP muscle initiate the motion, while the other flexor muscles slowly increase their activity. Further increasing of the point mass to 5 kg (9, middle) yields even higher muscle forces and activities.

In addition to the activity of PT and SUP, the muscle activities of the BIC and BRA go up to maximal activity during the motion and the activity of the BIC muscle is now comparable to the activity of the BRA muscle, while for motions with lower additional mass, the BIC is less involved than the BRA. With an additional point mass of 10 kg, the BRA and the BIC are maximally activated for nearly the complete simulation time and also the extensor muscles ECRL and TRI produce a remarkable amount of force. For the simulation with an additional point mass of 10 kg, an inequality constraint on the joint angles in the wrist is necessary to meet anatomical restrictions.

4 Conclusion

This work covers the implementation of geometrically complex muscle paths wrapping around bodies and joints into the formulation of a biomechanical optimal control problem. We investigate an algorithm that describes the muscle path via combinations of line and helix curves, which are able to slide around the bodies during dynamical simulations. The algorithm is exact for most geometrical cases. On rare occasions, if an analytical solution with line and helix is not possible due to large pronation or supination motions or if the solutions is not defined in \mathbb{R}, an approximation is made in a way that the solution least intersecting the bodies is chosen. This guarantees that there is always a muscle path provided during the solution of the optimal control problem, while the computational effort stays in a reasonable range.

To solve the optimal control problem, we use a structure preserving direct transcription method DMOCC, yielding the benefit that torques and forces are exactly transferred into motion of the system and no numerical dissipation affects the problem.

The influence of this dynamical muscle path algorithm is shown in an example of optimal controlled arm lifting. The main
Conclusion is that force directions have a high impact on the optimal control simulations, meaning that it is important to implement force directions as correctly and realistic as possible to get realistic results from the simulations. Our approach is a first step in this direction, nonetheless muscle insertion points are assumed to be point insertions, while they are more planar in reality and the elbow mechanics representation in our model makes it difficult to distinguish between muscle inserting on ulna and radius and the associated effects. Summarising, one can see that the model predicts an expectable increase in muscle forces when an additional weight has to be lifted. However, this should be compared to literature or experimental data to judge if the activity profile is realistic. As the cost function has a major influence on the resulting activity profile, also other cost functions will be compared in the future concerning the activity profiles they yield, as it is done for a similar arm lifting simulation without point mass in [20].

References

