On modelling and simulation of dielectric elastomer actuators via electrostatic-elastodynamic coupling

T. Schlögl*, S. Leyendecker*, S. Reitelshöfer#, M. Landgraf#, I.S. Yoo#, J. Franke#

* LTD – Chair of Applied Dynamics
University of Erlangen-Nuremberg
Haberstr. 1, D-91058 Erlangen, Germany
[Tristan.Schloegl, Sigrid.Leyendecker]@ltd.uni-erlangen.de

FAPS – Institute for Factory Automation and Production Systems
University of Erlangen-Nuremberg
Egerlandstr. 7, D-91058 Erlangen, Germany
[Sebastian.Reitelshoefer, Maximilian.Landgraf, Yoo, Franke]@faps.uni-erlangen.de

ABSTRACT

The aim of this work is to set up a numerical framework to characterise the deformation process and effective forces when voltage is applied to dielectric elastomer actuators (DEA). As with capacitors, when an external voltage is applied to the conductive layers, an electric field is established [3]. Resulting Maxwell stresses lead to a contraction of the DEA. These effects are described by the Maxwell equations, the balance of momentum and constitutive material laws. Based on a model for non-linear electro-elasticity that covers the static case only [4, 15], inertia terms are included in order to obtain a description of the deformation process depending on time. A potential energy function that is composed of Neo-Hooke material behaviour, electric field energy and coupling terms covers the material behaviour. Combined with the kinetic energy, a Lagrange function forms the basis in a variational setting of the model. Approximating the action integral using quadrature rules, discretising with finite elements in space and finite differences in time and applying a discrete version of Hamilton’s principle [9], a structure preserving integration scheme for DEAs is obtained and evaluated.

1 INTRODUCTION

Modern robotic systems still suffer some severe limitations with regard to their efficiency concerning energy and resources. Due to the high weight of electrical drives and portable batteries, they are far from being autarkic for longer times. Furthermore, the rigid coupling between electrical drives and links does not allow for dynamic motions like they occur in nature, where flexible muscles act as an energy buffer. Due to their potential capability of solving some of these problems, dielectric elastomer actuators (DEA, also called artificial muscles) are the subject of intense research. This joint project addresses on the one hand the development of automated production of multilayer DEAs together with the lightweight power electronics (FAPS), and on the other hand the derivation of a numerical framework to characterise the deformation process and effective forces when voltage is applied to the DEA (LTD). The actuators are composed of a series of single cells, each one equipped with two conductive layers separated by insulating dielectric silicone. In this collaborative work [12], a dielectric silicone is used as the main component, and conductive layers are introduced by adding carbon nanotubes.

2 PRODUCTION AND ELECTRONICS

Realising an automated manufacturing process for DEAs is one key element to facilitate the transition from fundamental research to the qualification of DEAs as regular control elements. To gain DEAs with driving voltages below one kilovolt, the reduction of the layer thickness of the dielectric medium below 100 micrometer must be realised [2]. Consequently, in order to obtain stacked DEAs, the manufacturing process must be capable of generating thin layers and – with respect to systems usable on a macroscopic scale – numerous of them. Another requirement with implications for the process is the thickness-ratio between the
dielectric and the electrode structures, as the passive electrodes do not actively contribute to the contraction of DEAs. The electrodes should also show similar mechanical characteristics as the dielectric medium in order to not hinder the desired deformation, respectively the actuation [13]. Finally, for enabling stacked DEAs to bear tensile loads resulting from their contractile behaviour, among different other necessities, the inter-layer adhesion is of importance.

Incorporating these framework conditions, within the presented project the Aerosol Jet Printing process (illustrated in Figure 1) is investigated for producing DEAs based on room temperature vulcanising two component polydimethylsiloxanes (RTV-2 PDMS) as these materials show a better long term stability compared to acrylic systems [8]. Elastomeric layers with thicknesses ranging from four to twelve micrometer are created in first experiments by sequentially printing the two components of the used RTV-2 Elastosil P7670 on top of each other. To improve the homogeneity of the printed layers, a system is currently being built up, which allows the mixing of at least two aerosol streams before leaving the printing nozzle and therefore preventing the deformation of printed but yet uncured single component layers. In parallel, after first promising experiments, the process is also being developed further for manufacturing electrode layers of the same RTV-2 material but compounded with 1-2 wt% of multi-wall carbon nanotubes. The low filling ratio leads to electrodes with favourable mechanical characteristics as mentioned above, while reaching percolation threshold at the same time [1].

One major advantage of DEAs is their possible lightweight design, making them suitable for mobile kinematics. However, usually each actuator needs its own high voltage power supply. The use of several actuators in complex kinematics would implicate a high weight due to the use of many transformers. Therefore, a lightweight control hardware is developed that consists of a central power supply and a logic part, which is able to generate the driving signal for several actuators. For the control of DEAs, the concept of pulse width modulation (PWM) is used. Since one DEA describes an electromechanical system with inertia, the high frequency PWM signal is smoothed and an averaged voltage is applied to the actuator.

This methodology is first shown and proved in [5], where a single cell DEA based on acrylic is controlled via PWM and an optocoupler as the switching element. However, with the switching element used in [5], only low currents in the range of a hundred micro amperes are possible, which is too little for stacked actuators with higher capacity. Therefore, field effect transistors used as lightweight semiconductor switching devices are evaluated in [7], allowing higher switching frequencies and currents. With the concept of PWM, it is possible to use only one constant high voltage power source, whereas the current state of each DEA is controlled by the switching device of the lightweight logic part of the control hardware. This concept provides independent supply and control of several actuators, whereas the hardware is reduced to a minimum regarding weight and volume.

3 BASIC EQUATIONS

In this section, the basic equations of finite deformation and electric fields are presented and relevant mechanical and electrical quantities are introduced. Throughout this work, physical vectors and tensors are denoted in boldface, whereas 1-dimensional arrays are denoted by \((\bullet)\) and matrices by \((\mathbf{\bullet})\). \(\partial_0 a\) is the derivative of \(a\) with respect to \(b\) and material operations \(\nabla \cdot (\bullet)\) and \(\nabla \times (\bullet)\) differ from the spatial
The reference configuration of the relaxed dielectric actuator at time \(t = 0 \) is denoted with \(\mathcal{B}_0 \). The reference position vector \(X \) points to a material point of the body in reference configuration. The configuration of the body after a certain time \(t \) is denoted by \(\mathcal{B}_t \), with the spatial position vector \(x(X, t) \) that points to the actual position of a material point \(X \). By the introduction of the deformation gradient \(F = \partial X x \) and using Nanson’s formula, spatial line elements \(d\bar{x} \), spatial area elements \(d\bar{a} \) and spatial volume elements \(d\bar{v} \) are related to their material counterparts \(dX, dA \) and \(dV \) by

\[
d\bar{x} = F \cdot dX, \quad d\bar{a} = J F^{-T} \cdot dA, \quad d\bar{v} = J dV,
\]

with the determinant of the deformation gradient \(J = \det F \). For symmetry reasons, the right Cauchy-Green tensor \(C = F^T \cdot F \) is often used when considering isotropic materials.

Maxwell’s equations covering electromagnetic effects are given by

\[
\begin{align*}
\nabla \times e + \dot{b} &= 0 \\
\nabla \times h + \dot{d} &= \mathbf{j} \quad (2a) \\
\nabla \cdot d &= \rho f \\
\nabla \cdot b &= 0 \quad (2b)
\end{align*}
\]

with the electric field \(e \), magnetic induction \(b \), magnetic field \(h \), electric displacement \(d \), electric current density \(\mathbf{j} \) and the density of free changes \(\rho f \), all being spatial quantities. In the absence of magnetic fields, electric currents and free charges and with the assumption of quasi-static theory, Maxwell’s equations reduce to

\[
\begin{align*}
\nabla \times e &= 0 \\
\nabla \cdot d &= 0 \quad (3)
\end{align*}
\]

describing electrostatics. Considering the integral forms of Equation (3)

\[
\int_{C_t} e \cdot ds = 0 \quad \int_{S_t} d \cdot dA = 0
\]

with a closed curve \(C_t \) bounding a regular surface \(S_t \) of the spatial domain \(\mathcal{B}_t \), material counterparts for \(e \) and \(d \) can be obtained by rewriting the integral forms with the help of Equation (1)

\[
\int_{C_0} (F^T \cdot e) \cdot dS = 0 \quad \int_{S_0} (J F^{-1} \cdot d) \cdot dA = 0
\]

with associated material quantities \(C_0 \) and \(S_0 \) of \(\mathcal{B}_0 \). The definitions

\[
E = F^T \cdot e \quad D = J F^{-1} \cdot d
\]

motivate a material counterpart to Equation (3)

\[
\nabla X \times E = 0 \quad \nabla X \cdot D = 0 \quad (7)
\]

using the material electric field \(E \) and the material electric displacement \(D \). From Equation (7) on the left hand side it directly follows that \(E \) can be expressed as the gradient of a scalar electric potential \(\phi \)

\[
E = -\partial X \phi. \quad (8)
\]

The mechanical momentum balance in spatial configuration is given by

\[
\nabla \cdot \sigma + b_t = \rho t \ddot{x}, \quad (9)
\]

with the Cauchy stress \(\sigma \), external volume loading \(b_t \), spatial density \(\rho_t \) and the absolute acceleration of a spatial point \(\ddot{x} \). In case of electric excitation, the volume force is given by [11]

\[
b_t = (\nabla x e) \cdot p
\]

where the spatial polarisation \(p \) of the material can be obtained by

\[
p = d - \varepsilon_0 e, \quad (11)
\]
with the vacuum permittivity ε_0. Inserting Equation (11) in Equation (10) and using Equation (3), the polarisation can be eliminated and the electric excitation is given by

$$b_t = \nabla_x \cdot \left(e \otimes d - \frac{1}{2} \varepsilon_0 [e \cdot e] \mathbf{1} \right),$$

(12)

where $\mathbf{1}$ is the identity. This form allows to define a total stress tensor τ that is given by

$$\tau = \sigma + d \otimes e - \frac{1}{2} \varepsilon_0 \left[e \cdot e \right] \mathbf{1},$$

(13)

so that the coupled problem with Equations (9) and (10) can be simplified to

$$\nabla_x \cdot \tau^T = \rho_t \ddot{x}.$$

(14)

By introducing a total material stress tensor $T = J F^{-1} \cdot \tau$, Equation (14) can be rewritten in the reference configuration, analogously to the way Equation (7) on the right hand side is derived in the reference configuration.

Together with boundary conditions, the total coupled problem in strong form is then given by

$$\nabla x \cdot D = 0 \quad \text{in} \quad B_0$$

(15a)

$$\nabla x \cdot T^T = \rho_0 \ddot{x} \quad \text{in} \quad B_0$$

(15b)

$$D \cdot N = -\overline{Q} \quad \text{in} \quad \partial B_{0q}$$

(15c)

$$T^T \cdot N = T \quad \text{in} \quad \partial B_{0\tau},$$

(15d)

with the electric charge \overline{Q} on the boundary $\partial B_{0q} \subset B_0$ and the external total traction T on the boundary $\partial B_{0\tau} \subset B_0$. Note that the coupling of elastodynamics with electrostatics is just a simplification of the general electrodynamics case, where electric fields are in interaction with magnetic fields. However, electrodynamic effects are considered to take place on a considerably smaller time scale compared to elastodynamics, such that their resolution would lead to a drastic increase in computational costs.

The set of Equations (15) must be completed with constitutive models, that associate the electric displacement D and the total stress T with the deformation gradient F and the electric field E, respectively, the spatial position x and the electric potential ϕ. The constitutive model is given by a local energy density function that is introduced in the following section.

4 VARIATIONAL FORMULATION

The potential energy Π of the body under consideration is given as a function of the deformation gradient F and the electric field E

$$\Pi(F, E) = \int_{B_0} \Omega(F, E) dV + \int_{\partial B_{0q}} \phi \overline{Q} dA,$$

(16)

where Ω is composed of the material free energy density Φ and a free space term satisfying Equation (10)

$$\Omega(F, E) = \Phi(F, E) - \frac{1}{2} \varepsilon_0 J C^{-1} : [E \otimes E].$$

(17)

According to Dorfmann [4], for isotropic material behaviour the free energy density Φ can only depend on $C = F^T \cdot F$ and $E \otimes E$. Here, an approach from Vu [15] is used, extending classical Neo-Hooke behaviour with two electric terms, so that the free energy becomes

$$\Phi = \frac{\mu}{2} [C : 1 - 3] - \mu \ln(J) + \frac{\lambda}{2} [\ln(J)]^2 + c_1 E \cdot E + c_2 C \cdot [E \otimes E].$$

(18)

using Lamé parameters μ and λ as well as electric parameters c_1 and c_2. The last summand in Equation (18) accounts for the electro-mechanical coupling and the parameter c_2 controls the coupling intensity.
The kinetic energy T of the dielectric actuator is given by

$$
T(\dot{x}) = \frac{1}{2} \int_{B_0} \rho_0 ||\dot{x}||^2 dV,
$$

and the Lagrangian can be given as

$$
L(F, E, \dot{x}) = T(\dot{x}) - \Pi(F, E).
$$

External mechanical traction T on ∂B_{0r} is introduced into the action integral

$$
S = \int_{t_0}^{t_N} \left(L(F, E, \dot{x}) + \int_{\partial B_{0r}} \mathbf{x} \cdot \mathbf{T} dA \right) dt,
$$

for the time interval $[t_0, t_N]$ and the evaluation of Hamilton’s principle $\delta S = 0$ leads to

$$
\int_{t_0}^{t_N} \left\{ \int_{B_0} \left(\nabla X \cdot \partial F \Omega - \rho_0 \dot{x} \right) \cdot \delta x + \left[\nabla X \cdot \partial E \Omega \right] \delta \phi \right\} dV
- \int_{\partial B_{0r}} \left(\partial E \Omega \cdot \mathbf{N} + Q \right) \delta \phi dA - \int_{\partial B_{0r}} \left(\partial F \Omega \cdot \mathbf{T} - \mathbf{x} \right) \cdot \delta x \right\} dA = 0.
$$

Due to spatially disjoint integrals and the fundamental lemma of calculus of variations, each term in square brackets $[\bullet]$ in Equation (22) must be zero for itself. Considering additionally the constitutive relationships

$$
D = -\partial E \Omega \quad \text{and} \quad T = (\partial F \Omega)^T,
$$

it follows that in consideration of Hamilton’s principle, the action integral given in Equation (21) is a complete formulation of the system given in Equations (15).

5 DISCRETISATION AND LINEARISATION

In order to solve the coupled problem (15) numerically for given initial conditions, all state variables $x(X, t)$ and $\phi(X, t)$ have to be discretised in space and in time. The spatial discretisation is introduced using finite elements with shape functions N_m for all m nodes in space. Within each finite element, the position vector x is approximated by

$$
x \approx \mathbf{x} \cdot N = x_d,
$$

with the discrete position row array

$$
\mathbf{x} = (x^1 \ x^2 \ \ldots \ x^m)
$$

and the associated column array of shape functions

$$
N = (N^1 \ N^2 \ \ldots \ N^m)^T.
$$

Accordingly, the approximation of the electric potential ϕ can be obtained by

$$
\phi \approx \phi \cdot N = \phi_d,
$$

with

$$
\phi = (\phi^1 \ \phi^2 \ \ldots \ \phi^m).
$$

The deformation gradient F is approximated by

$$
F = \partial_X x(X, t) \approx \partial_X (x(t) \cdot \mathbf{N}(X)) = \mathbf{x} \cdot \partial_X N = F_d,
$$

and accordingly, the electric field vector is approximated by

$$
E \approx -\phi \cdot \partial_X N = E_d.
$$

Finally, all degrees of freedom are condensed into a one dimensional state array \mathbf{q}

$$
\mathbf{q} = (x^1 \ x^2 \ x^3 \ \phi^1 \ x^2 \ x^3 \ \ldots \ x^1 \ x^2 \ x^3 \ \phi^m)^T.
$$
5.1 Variational integrator

Many integration schemes start with the time discretisation of the equations of motion (here Equation (15)) directly. Alternatively, the discretisation can be introduced into the action, resulting in a variational integration scheme that is structure preserving and shows a very good energy behaviour [9]. For simplification, external traction \mathbf{T} is assumed to be zero, i.e. no natural boundary conditions are applied.

The action integral (21) is split into N time intervals with equal length

$$ S = \int_{t_0}^{t_N} L(F, E, \dot{x})dt = \sum_{n=0}^{N-1} \int_{t_n}^{t_{n+1}} L(F, E, \dot{x})dt, $$

where t_n with $n = 0, \ldots, N$ specify discrete time nodes. The remaining integral is approximated by using a general midpoint quadrature with a parameter β and finite differences for derivatives with respect to time

$$ \int_{t_n}^{t_{n+1}} L(F, E, \dot{x})dt \approx L(\beta F^n + (1 - \beta)F^{n+1}, \beta E^n + (1 - \beta)E^{n+1}, \frac{x^{n+1} - x^n}{\Delta t}) \Delta t, $$

such that a time discrete Lagrange function L^n is obtained. Introducing additionally the finite element discretisation that is discussed in the preceding section, we obtain a discrete action

$$ S_d = \sum_{n=0}^{N-1} L^n_d(x^n, x^{n+1}, q^n, q^{n+1}), $$

with the discrete Lagrangian $L^n_d = L^n(F^n_d, F^{n+1}_d, E^n_d, E^{n+1}_d, x^n_d, x^{n+1}_d)$.

Next, Hamilton’s principle is applied to the discrete action and the variation is evaluated using

$$ \delta F^n_d = \delta x^n \cdot \partial_x N \quad \text{and} \quad \delta E^n_d = -\delta x^n \cdot \partial_x N. $$

Because variations are zero at the time limits t_0 and t_N

$$ \delta F^0_d = \delta F^N_d = 0 \quad \text{and} \quad \delta E^0_d = \delta E^N_d = 0, $$

the sum indices can be shifted. Then, the fundamental lemma of calculus of variations is used and the spatial integrals are evaluated using Gauss quadrature in the reference domain such that the integration scheme

$$ F = \Delta t^{-2} M \cdot (q^{n+1} - 2q^n + q^{n-1}) + R(q^{n+1}, q^n, q^{n-1}) = 0 $$

(37)

is obtained. Note that the matrix R contains all non-linear terms and entries of the mass matrix M that are associated with electric degrees of freedom are zero, as electrostatics does not provide any electrical inertia, thus M is singular.

In order to solve Equation (37) for the unknown state q^{n+1} at the next time step for given previous and current states q^{n-1} and q^n, F is linearised in $q^{n+1} = \hat{q}$, such that

$$ (\Delta t^{-2} M + \partial_{\hat{q}} R) \cdot \Delta \hat{q} = -F(\hat{q}, q^n, q^{n-1}) $$

(38)

with the partial derivative of R with respect to \hat{q}

$$ \partial_{\hat{q}} R(\hat{q}, q^n, q^{n-1}) = (1 - \beta) \beta K(\hat{q}, q^n) $$

(39)

and the linearised stiffness matrix K. Solving Equation (38) for unknown $\Delta \hat{q}$

$$ \Delta \hat{q} = -K^{-1}_{\text{dyn}} \cdot F \quad \text{with} \quad K_{\text{dyn}} = \Delta t^{-2} M + (1 - \beta) \beta K $$

(40)

requires K_{dyn} to be regular. As M is singular, the second summand of K_{dyn} must not be zero. Therefore, β must neither be 0 nor 1. As illustrated in Section 6, a value of $\beta = .5$ shows to be computationally stable. When $\beta \to 0$ or $\beta \to 1$, the electric potential distribution starts oscillating around the steady-state obtained with $\beta = .5$.
5.2 Explicit integrator

Explicit variational integration schemes are obtained, when the Lagrangian is evaluated only at the left boarder or only at the right boarder of the current time interval during the discretisation of the action. However, this is identical to $\beta = 0$ or $\beta = 1$ and hence unstable as illustrated in the previous section. The explicit integration scheme

$$M \cdot q^{n+1} = -\Delta t^2 R(q^n) + 2M \cdot q^n - M \cdot q^{n-1} \quad (41)$$

can not be evaluated directly because M is singular. Therefore, q is split as

$$q = \begin{pmatrix} q_x \\ q_\phi \end{pmatrix} \quad (42)$$

into translational degrees of freedom q_x and electric degrees of freedom q_ϕ, such that eq (41) becomes

$$\begin{pmatrix} M_x & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} q_x \\ q_\phi \end{pmatrix}^{n+1} = -\Delta t^2 \begin{pmatrix} R_x(q^n) \\ R_\phi(q^n) \end{pmatrix} + 2 \begin{pmatrix} M_x & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} q_x \\ q_\phi \end{pmatrix}^n \begin{pmatrix} M_x & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} q_x \\ q_\phi \end{pmatrix}^{n-1} \quad (43)$$

Considering the special structure of the mass matrix, two equations are obtained that can be evaluated sequentially. In a first step, Equation (43) is evaluated only for q_x^{n+1}

$$q_x^{n+1} = -\Delta t^2 M_x^{-1} \cdot R_x(q^n) + 2q_x^n - q_x^{n-1} \quad (44)$$

Next, the electric potential distribution q_ϕ^{n+1} is obtained by solving the quasi-static coupled problem for given deformation q_x^{n+1}

$$R_\phi \begin{pmatrix} q_x^{n+1} \\ q_\phi^{n+1} \end{pmatrix} = 0 \quad (45)$$

In general, evaluating Equation (45) requires linearisation in q_ϕ^{n+1}. However, using the material model introduced in Equation (17), linearisation is not necessary, because $\partial E/\Omega$ is linear in E and hence in ϕ. The complete scheme is illustrated in Figure 2. Note that Equation (45) holds for all discrete times t^n and hence all n.

Figure 2. Explicit integration scheme evaluated in two steps, first for the unknown deformation q_x^{n+1}, second for the unknown electric potential q_ϕ^{n+1}.

6 NUMERICAL RESULTS

The two integration schemes described in the previous section are implemented into an in-house Galerkin-FEM MATLAB code, using hexahedral 8-node elements, tri-linear shape functions and an 8-point Gauss quadrature. The software Trelis\(^1\) is used to generate and mesh the geometry for a possible artificial muscle

\(^1\)http://www.csimsoft.com
shape with 4 cm length and 1 cm diameter. Due to symmetry, only part of the geometry is meshed, as illustrated in Figure 3 on the left hand side. Material parameters are taken from Vu [15] using a bulk modulus of $\kappa = 10$ MPa, shear modulus of $\mu = 5$ MPa, electric parameters $c_1 = 10 \frac{N}{V^2}$ and $c_2 = 6 \frac{N}{V^2}$ and introducing a density of $\rho = 10 \cdot 10^{-9} \text{ kg mm}^{-3}$. In addition to the general symmetry constraints, a potential difference of $\phi = 5$ V is applied between the two ends of the mesh, see Figure 3 on the right hand side.

Two output values are considered to be important. The actual length l of the muscle in percent of the original length, measured between two end points centred in the cross sectional area, provides an accurate representation of the current deformation state. Starting at a value of $l = 100\%$ for the equilibrium state, l decreases when a voltage is applied and the muscle contracts. Additionally, the accuracy of the energy behaviour of the simulation is important. Therefore, the total energy of the system is evaluated, consisting of the kinetic energy and the potential energy given in Equation (16). The kinetic energy is evaluated using a generalised momentum that is obtained by a discrete Legendre transformation [9].

When a voltage is applied to the model resulting in deformation, the capacity of the whole electrical system is altered. In order to maintain the essential boundary condition of a fixed voltage on the surface B_{bgq}, an external power supply has to continuously vary the charge on the electrodes of the artificial muscle. For a constant voltage this means that the external power supply continuously shifts energy to and from the simulated system. The change of energy ΔE_{ext} is given by

$$\Delta E_{\text{ext}} = \phi \Delta Q,$$

with a change of the charge ΔQ for constant voltage ϕ. Considering the total potential energy of the system given in Equation (16), it is clear that the change of energy induced by an external power supply ΔE_{ext} is directly associated with the boundary integral over ∂B_{bgq}. Thus, the total energy of the system evaluated only within B_0 and not on the boundary ∂B_0 is constant.

Figure 4 shows the length minimum and the mean total energy for different time steps Δt and the two introduced integration schemes.\(^2\) It can be observed that both procedures converge to a fixed value for decreasing time step size. The (implicit) variational integrator is very stable for large time steps, the explicit integration scheme is stable for very small time steps only. Whereas the convergence of the mean total energy is very smooth, some minor oscillations are to be observed for the length minimum. This is because the length of the muscle is evaluated only at two single nodes and hence strongly dependent on single undamped high frequency eigenmodes. Note that for organisational reasons the total simulation time is constrained to 24 h per simulation run, so that the possible minimum time step size is limited.

On the one hand, the variational integrator is of second order accuracy, whereas the explicit integrator is of first order only. On the other hand, the explicit scheme is computationally more efficient and allows smaller time steps. In order to compare the accuracy of the two integration schemes with respect to their computational cost, the simulation results for a very small time step size are considered as a reference solution to the problem. The maximum error to this solution of the length minimum and mean total energy,\(^2\) See an animation of the simulation on http://www.ltd.tf.uni-erlangen.de/Team/Schloegl/Arxiv/Movies/dea_undamped.mov
Figure 4. Length minimum (left hand side) and mean total energy (right hand side) with respect to time step size.

Figure 5. Maximum errors for length minimum (left hand side) and mean total energy (right hand side) versus wallclock time.

with respect to the total simulation time respectively, is to be observed in Figure 5. The simulation time, also referred to as wallclock time, is evaluated on a high performance computing cluster at Erlangen Uni. It is shown that for limited simulation time, the explicit integration scheme is more accurate with respect to computational cost. However, as seen in the energy plot, this fact changes when the two curves cross each other.

7 CONCLUSIONS

A general variational formulation of electrostatic-elastodynamic coupling is presented, including a hyper-elastic coupled Neo-Hooke material. By use of this variational formulation and the introduction of finite elements, a structure preserving variational integrator is derived. This integration scheme allows for geometrically exact time integration with a very good energy behaviour. In addition to the implicit variational integrator, an explicit scheme is introduced that is very efficient in terms of computational cost. Numerical examples show that the integration schemes are stable and converge for decreasing time step size.

Numerical examples also show that the application of voltage to the artificial muscle for the given material model results in high frequency oscillations and their resolution requires very small time step sizes. In order to make the simulation results more realistic, in the short term, viscoelastic material properties of silicone are introduced, such that the motion is damped. Additionally, a three-field formulation is being introduced that allows for the simulation of incompressible elastic materials without facing any locking effects [14].
In the long term, the presented model is being used to actuate kinematic systems of humanoid structure. Optimal control theory is then used to optimise the interaction between applied voltage and resulting motion of the kinematic chain.

REFERENCES

