Abstract

Recently, a couple of approaches have been developed that combine multiobjective optimization with direct discretization methods to approximate trajectories of optimal control problems, resulting in restricted optimization problems of high dimension. The solution set of a multiobjective optimization problem is called the Pareto set which consists of optimal compromise solutions. A common way to approximate the Pareto set is to start with at least one given Pareto point and to evolve the Pareto set using a local continuation method. With our approach, we first roughly approximate the feasible set of the multiobjective optimal control problem by using a global root finding approach. The roughly approximated feasible set provides information to find an appropriate scaling of the single objectives and to find initial guesses for the continuation of the Pareto set. Then, the continuation is performed by a reference point method. To reduce the dimension of the underlying optimal control problem, a local reparametrization in combination with a discrete null space method is used.

Keywords: multiobjective optimization, optimal control, reference point method, null space method, discrete mechanics, kinematic chain

1 Introduction

Optimal control of multibody dynamics is present in a variety of practical applications e.g. robotics or biomechanics. The aim is to control the motion of rigid bodies such that some predefined objectives are optimized. For example, an industrial robot should move in minimal time, with minimal energy consumption, minimal mechanical wear and maximum payload and ideally, all objectives are optimized simultaneously. In the case of conflicting objectives, this is impossible because the optimal solution of one objective does not coincide with an optimal solution of another objective. In general, a decision maker has to select a trade-off solution that fits the specific demands best. Such problems are called multiobjective optimal control problems and the set of optimal trade-off solutions is the Pareto set.

A common way to numerically find optimal trajectories fulfilling a general ordinary differential equation are direct methods [1]. The trajectories and differential equations are discretized based on a discrete time grid, leading to a set of values representing approximations to the trajectories of each time node and a set of nonlinear constraints. The discretized problem is solved by minimization methods like SQP [2] or interior point methods [3]. To meet accuracy requirements, typically a high number of grid points is chosen. In order to solve optimal control problems for multibody dynamics, we use DMOCC [4] (Discrete Mechanics and Optimal Control for Constrained systems). A direct discretization of the variational formulation of the dynamics of the system, in combination with a reparametrization in generalized coordinates of a lower dimension and a discrete null space method [5] to reduce the complexity of the problem in several ways are applied. On the one hand, using redundant coordinates allows an easy formulation of the Lagrangian describing the dynamics of the system, on the other hand a reparametrization in minimal coordinates reduces the dimension of the parameter space and ensures that the holonomic constraints are fulfilled automatically. Moreover, using a null space matrix allows to eliminate Lagrange multipliers from the set of unknowns, instead a computation in post-processing is possible if needed. The discretization technique is successfully applied to different problems [6, 7]. Also a first approach to multiobjective optimal control exists [8].

One simple and widely used way to deal with several conflicting objectives is to optimize a weighted sum of all objectives. Thereby, each weighting vector leads to precisely one single optimal solution. Using a multiobjective optimization method instead leads to an approximation of the Pareto set and its image under the objective functions, the Pareto front.
The Pareto set contains the solutions that can be gained with any selected (positive) weighting vector and moreover, using a sequence of weighting vectors can lead to an approximation of the whole Pareto set in case of a convex Pareto front, but not in case of a non convex Pareto front [9]. Another drawback of the so called method of weighted sums mentioned in [9] is that an evenly distributed set of weights fails to produce an even distribution of points approximating all parts of the Pareto front.

However, analyzing all parts of the Pareto front is necessary for the decision maker to select a specific Pareto optimal solution fitting the demands best. Often, slightly worsening some of the objectives can lead to a huge improvement of other objectives. Consequently, other multiobjective optimization methods are developed to overcome the disadvantages of the weighted sum approach. We classify multiobjective optimization methods in global and local methods, where global methods provide a set of parameters in each iteration step, evolving to an approximation of the global Pareto set. Examples of these methods are evolutionary algorithms [10, 11] or subdivision techniques [12, 13]. A drawback of global methods is that they are time consuming in particular for problems with a high dimensional parameter space as it is the case for multiobjective optimal control problems. Thus, in case of a high dimensional parameter space, often local methods are applied, which use local information to compute nearby solutions iteratively but require initial Pareto optimal solutions to approximate the Pareto set. We use a rough approximation of the feasible set to provide several initial guesses for a local reference point method and to find an appropriate scaling of the objectives. Reference point methods iteratively minimize the distance of the vector valued objective to a selected reference point. Each distance minimization is solved using a local (single objective) minimization method. The scaling of the objectives supports the generation of reasonably distributed reference points, leading to a reasonably distributed approximation of the Pareto front.

Our multiobjective optimal control approach is exemplified by a four body kinematic chain that consists of four rigid bodies interconnected by two revolute joints and one spherical joint. The initial and final conditions are fully specified such that the kinematic chain moves from a straight to a closed position, performing a rest to rest maneuver. The objectives to minimize are the control effort for the entire maneuver and the required maneuver time.

In Section 2, the multiobjective optimal control problem is introduced in a general formulation. The discretization method DMOCC is described in Section 3 and a general introduction to multiobjective optimization follows in Section 4. In Section 5, the numerical approach for solving multiobjective optimal control problems is presented. The rough approximation of the feasible set is introduced to provide initial guesses and to scale the objectives. Moreover, the reference point method is described. In Section 6, the numerical results for the four body kinematic chain model are presented. We conclude with an outlook to future work in Section 7.

2 Multiobjective optimal control for constrained multibody dynamics

In this section, we shortly recall the formulation of constrained multibody dynamics [4, 5] and introduce the multiobjective optimal control problem.

2.1 Constrained multibody dynamics

The systems that we want to control optimally are multibody systems consisting of rigid bodies interconnected by joints. Each joint induces external constraints to the \(n \)-dimensional time-dependent configuration vector \(q(t) \in Q \) in the configuration manifold \(Q \subseteq \mathbb{R}^n \). Moreover, the problem is given in a constrained formulation of rigid body dynamics such that internal constraints are required to fulfill the underlying kinematic assumptions. Altogether, a holonomic constraint function \(g : Q \to \mathbb{R}^m, m < n \), consisting of the internal and external constraints, restricts the possible movements of the multibody system. In other words, the possible configurations \(q(t) \) are restricted to the constraint manifold \(C := \{q(t) \in Q | g(q(t)) = 0\} \). The configurations are further restricted by the dynamical behavior of the system, which is described by the Lagrangian \(L : TQ \to \mathbb{R} \). The Lagrange-d’Alembert principle that involves the variation of the constrained action and the virtual work describes the possible movement of the system as (e.g. [14]):

\[
\delta \int_{t_0}^{t_f} [L(q(t), \dot{q}(t)) - g(q(t))\lambda(t)] \, dt + \int_{t_0}^{t_f} f\delta q(t) \, dt = 0,
\]

(1)
for all variations \(\delta q \in TQ \) vanishing at the endpoints \(t_0, t_N \) and for some Lagrange multipliers \(\lambda(t) \in \mathbb{R}^n \) and its variations \(\delta \lambda \). The principle (1) is equivalent to the forced constrained Euler-Lagrange equations of motion

\[
\frac{d}{dt} \frac{\partial}{\partial \dot{q}} L(q, \dot{q}) - \frac{\partial}{\partial q} L(q, \dot{q}) - Dg^T(q)\lambda - f = 0 \\
g(q) = 0
\]

which is a system of differential algebraic equations representing the equations of motion.

Under given regularity conditions, a local reparametrization function \(F : U \to C \) for an open subset \(U \subseteq \mathbb{R}^{n-m} \) exists and can be given explicitly. Consequently, the redundant configuration vector \(q(t) \in Q \) and its velocities \(\dot{q}(t) \in Tq(t)Q \) in the tangent space are given by an expression of generalized configurations \(q = F(u) \) and velocities \(\dot{q} = DF(u)\dot{u} \). Thus, \(u(t) \in U \) instead of \(q(t) \in Q \) reduces the dimension of the configuration space to \(n-m \) instead of \(n \) and moreover, the holonomic constraints \(g(F(u)) = 0 \) are fulfilled automatically. Analogously, the force field \(f \) is not independent due to the holonomic constraints and can be expressed by time dependent generalized control forces \(\tau(t) \in T^*U \) via

\[
\tau = (\frac{\partial F}{\partial t})^T f
\]

Reducing the dimension of the control space (e.g. [15]). On the other hand, one can express the force field by using a configuration dependent input transformation matrix \(B^T(q) : T^*U \to T^*Q \) with \(f = B^T(q)\tau \). Moreover, for an \(n \)-dimensional \(Q \) as the constraints are independent for all \(q(t) \in C \), then \(C \) is an \((n-m) \)-dimensional submanifold of \(\mathbb{R}^n \) and thus \(Tq(t)C \) is an \((n-m) \)-dimensional linear subspace of \(\mathbb{R}^n \). Let \(P(q(t)) \in \mathbb{R}^{n \times (n-m)} \) be a matrix with (linearly independent) column vectors that span \(Tq(t)C \), then it holds that \(\text{range}(P(q)) = \text{null}(Dg(q)) \) and therefore \(P^T(q)Dg^2(q) = 0 \). Consequently, a premultiplication of \(P^T(q) \) in equation (2) eliminates the Lagrange multipliers \(\lambda \) and together with the reparametrization \(F \) reduces the system to \(n-m \) equations instead of \(n \), (compare e.g. [5]). Altogether we have

\[
P(F(u))^T \left[D_1L(F(u), DF(u)\dot{u}) - \frac{d}{dt}D_2L(F(u), DF(u)\dot{u}) + B^T(F(u))\tau\right] = 0
\]

with \((n-m) \) equations instead of \((n+m) \) equations in (2)-(3) and with \(D_i \) denoting the derivative with respect to the \(i \)-th argument.

2.2 Multiobjective optimal control

Our aim is to optimally control multibody systems. Therefore, we consider an objective functional \(J : U \times T^*U \times [t_0, \infty[\to \mathbb{R}^k \) (cf. [8]) of the following form

\[
J(u, \tau, t_N) = \int_{t_0}^{t_N} C(u(t), \dot{u}(t), \tau(t)) \, dt
\]

with \(C : TU \times T^*U \to \mathbb{R}^k \), \(k > 1 \). Instead of just one objective, we consider several objectives simultaneously, i.e., each component of \(J \) represents one objective. The parameters \((u, \tau, t_N) \) are constrained by lower and upper bounds \(u \leq u \leq \bar{u}, \tau \leq \tau \leq \bar{\tau} \), and \(t_N \leq t_N \leq \bar{t}_N \). Moreover, we consider problems with initial and final state constraints

\[
r_0(u(t_0), \dot{u}(t_0)) = 0 \\
r_N(u(t_N), \dot{u}(t_N)) = 0
\]

prescribing the initial and final state of the multibody system. Combined with the equations of motion (4), we obtain the following multiobjective optimal control problem

Problem 1. (Multiobjective optimal control problem)

\[
\min_{(u, \tau, t_N)} J(u, \tau, t_N) = \int_{t_0}^{t_N} C(u(t), \dot{u}(t), \tau(t)) \, dt
\]

s.t.

\[
P(F(u))^T \left[D_1L(F(u), DF(u)\dot{u}) - \frac{d}{dt}D_2L(F(u), DF(u)\dot{u}) + B^T(F(u))\tau\right] = 0
\]

\[
r_0(u(t_0), \dot{u}(t_0)) = 0 \\
r_N(u(t_N), \dot{u}(t_N)) = 0
\]

\[
u \leq u \leq \bar{u}, \quad \tau \leq \tau \leq \bar{\tau}, \quad \text{and} \quad t_N \leq t_N \leq \bar{t}_N
\]
3 Discretization of the multiobjective optimal control problem

The multiobjective optimal control Problem 1 is transformed to a discretized formulation via a direct discretization approach called DMOCC [4]. DMOCC is a combination of Discrete Mechanics and Optimal Control (DMOC) [16] and discrete versions of the reparametrization to generalized parameters and the null space method introduced in Section 2. Instead of discretizing the Euler-Lagrange equations of motion (2)-(3) or (4) directly, we use a discretized variational principle. In the following, we sketch the main idea and refer to [4] for details.

The time interval \([t_0, t_N]\) is replaced by a set of \(N+1\) equidistant time nodes \(t_i = t_0 + ih, i \in [N] := \{0, 1, \ldots, N\}\) and a step size \(h = \frac{t_N - t_0}{N}\). The configuration functions \(q_i: \{t_0, t_N\} \to \mathbb{R}^q, u_i: \{t_0, t_N\} \to \mathbb{U}\) \(q\) are replaced by a value at each time node, leading to discrete functions \(q_d: \{t_i\} \times [N] \to \mathbb{R}^q\) and \(u_d: \{t_i\} \times [N] \to \mathbb{U}\), with \(q_i := q_d(t_i) \approx q(t_i)\) and \(u_i := u_d(t_i) \approx u(t_i)\). Similarly, the discrete control function \(\tau_d\) approximates the continuous control function on each interval \([t_i, t_{i+1}]\). Finite differences and numerical integration are used to replace \(TQ\) by \(Q \times Q\) and to discretize the Lagrange-d’Alembert principle (1) based on a discretized Lagrangian \(L_d: \mathbb{R}^q \to \mathbb{R}\).

Taking discrete variations \(\delta q_i, i \in [N]\) leads to discrete Euler-Lagrange equations that approximate the equations of motion. Similar as in Section 2, a discrete reparametrization \(F_d: U \times Q \to C\) with \(q_i = F_d(u_i, q_{i-1})\), a null space matrix \(P_d^T(q_i)\) and an input transformation matrix \(B_d^T(q_i)\) are used to reduce the dimension. The reduced scheme reads

\[
P_d^T(q_i) \left[D_2L_d(q_{i-1}, q_i) + D_1L_d(q_i, F_d(u_{i+1}, q_i)) + \frac{h}{2} B_d^T(q_i) (\tau_{i-1} + \tau_i) \right] = 0
\]

for \(i = 1, \ldots, N - 1\). In the same way, we obtain a discretized objective function \(J_d(u_d, \tau_d, t_N)\), such that we can formulate the following optimization problem.

Problem 2. (Discretized multiobjective optimal control problem)

\[
\min_{(u_d, \tau_d, t_N)} J_d(u_d, \tau_d, t_N) = \sum_{i=0}^{N-1} C_d(u_i, u_{i+1}, \tau_i, t_N)
\]

s.t. \(P_d^T(q_i) \left[D_2L_d(q_{i-1}, q_i) + D_1L_d(q_i, F_d(u_{i+1}, q_i)) + \frac{h}{2} B_d^T(q_i) (\tau_{i-1} + \tau_i) \right] = 0\)

\(r_d(u_0, u_1, \tau_0) = 0\)

\(r_{dN}(u_{N-1}, u_N, \tau_{N-1}) = 0\)

\(u_d \leq u_d \leq u_d, \quad \tau_d \leq \tau_d \leq \tau_d, \quad \text{and} \quad t_N \leq t_N \leq t_N\)

with discretized versions of the optimization variables \(x := (u_d^T, \tau_d^T, t_N^T)^T\), initial and final conditions (16), (17), and lower and upper bounds (18) with \(t_0 < t_N\). The dimension \(M = (n - m)(2N + 1) + 1\) of the optimization variable \(x\) as well as the number of equality constraints \((n - m)(N - 1)\) in (15) depend on the number of discrete time nodes \(N + 1\). Typically, a high number of time nodes is chosen in practical problems to meet accuracy requirements of the approximated trajectories, for a detailed convergence analysis we refer to [16].

4 Multiobjective optimization

A general multiobjective optimization problem consists of a vector valued objective function \(\phi : \mathbb{R}^M \to \mathbb{R}^k, k > 1\), equality and inequality constraints \(h : \mathbb{R}^M \to \mathbb{R}^n\) and \(e : \mathbb{R}^M \to \mathbb{R}^n\). Without loss of generality, we assume that each of the objectives \(\phi_i\) is minimized, otherwise a maximization can be transformed into an equivalent minimization. Using these functions, the multiobjective optimization problem is given by:

Problem 3. (Multiobjective optimization problem)

\[
\min_{x \in S} \phi(x), \quad S := \{x \in \mathbb{R}^M \mid h(x) = 0, \ e(x) \leq 0\}.
\]

Observe that the discretized multiobjective optimal control Problem 2 is of this kind. For a given multiobjective optimization problem with objective \(\phi\) and feasible set \(S\) (i.e. all points \(x \in \mathbb{R}^M\) that satisfy (15)-(18)), the following definitions (e.g. [17, 18]) clarify what we mean by the minimum of a vector valued function.

Definition 1. (Dominance, Pareto point, Pareto set, Pareto front)
(i) A vector \(y \in S \) is dominated by a vector \(x \in S \) (in short: \(x \prec y \)) with respect to Problem 3 if \(\phi(x) \leq \phi(y) \) and \(\phi_i(x) < \phi_i(y) \) for at least one component \(\phi_i \) of \(\phi \).

(ii) A vector \(x \in S \) is called local Pareto optimal or a local Pareto point if there is no \(y \in U \cap S \), such that \(y \prec x \) for a neighborhood \(U \) of \(x \) and (global) Pareto optimal if \(U = \mathbb{R}^M \). Sometimes also its corresponding point in image space \(\phi(x) \) is called a (local) Pareto point.

(iii) The Pareto set \(\mathcal{P} \) is defined as the set of all Pareto points and the corresponding set in the image space \(\phi(\mathcal{P}) \) is called the Pareto front (analogously for a local Pareto set and front).

Minimizing a vector valued function in practice means to approximate its Pareto set by a finite number of approximated Pareto points. In our case each Pareto point represents a trajectory of the underlying optimal control problem. Global optimization is a challenging task even in case of a single objective, in particular for high dimensional problems like the optimal control of multibody dynamics. Thus, instead of using global multiobjective optimization methods like evolutionary algorithms, often gradient based local minimization methods like SQP [2] or interior point methods [3] are used to minimize a sequence of scalarized auxiliary problems. Our approach is based on a sequence of distance minimizations, a so called reference point method [8]. It is a continuation method that iteratively provides appropriate initial guesses for the next step. Depending on the initial guess, each distance minimization leads to a local or possibly global Pareto point. In order to provide initial guesses for the first distance minimization, we roughly approximate the feasible set \(S_d \approx S \) and sort out all the points which are dominated by other points. This test of dominance can be done efficiently, even for a high number of feasible points, e.g. by the Graef-Younes method [19] or dominance decision trees like in [20]. The procedure further gives us an idea of the shape of the Pareto front and helps to choose a scaling to balance the components of \(\phi \).

To approximate the Pareto set of a multiobjective optimal control problem, we propose the following solution strategy:

Strategy 1. (Numerical approach to solve multiobjective optimal control problems)

2. Selection of appropriate trajectories (e.g. test of dominance to sort out dominated trajectories).
3. Scaling of the objectives.
4. Continuation of the Pareto set (e.g. using a reference point method).

5 Numerical approach

In this section a detailed description for the steps in Strategy 1 is given.

5.1 Rough approximation of the feasible set and test of dominance

The feasible set \(S \) is defined by equations (15)-(18) of the underlying discretized multiobjective optimal control problem 2. One way to approximate it is to use slack variables to transform the inequality constraints into additional equality constraints. The resulting problem is a root finding problem and can be solved e.g. by using global subdivision techniques [21], or locally by continuation methods as similarly done in [22].

As we are just interested in a rough approximation, we use a simpler approach here. First, we randomly select a finite number of possibly infeasible trajectories \(x \) that satisfy the lower and upper bounds (18). These are initial guesses for the minimization problem \(\min_{x \in S} 1 \) leading to a finite set of trajectories \(S_d \subseteq S \). Moreover, evaluating \(\phi \) on each feasible point leads to a finite approximation of the image of the feasible set \(\phi(S) \) such that we have \(S_d \approx S \) and \(\phi(S_d) \approx \phi(S) \).

Further, applying a test of dominance on these sets leads to an approximation of the Pareto set and front \(\mathcal{P}_d \approx \mathcal{P} \) and \(\phi(\mathcal{P}_d) \approx \phi(\mathcal{P}) \). Depending on the number of the initially selected trajectories, this approximation can be quite rough. However, \(\phi(\mathcal{P}_d) \) already indicates the shape of the Pareto front which is used to determine an appropriate scaling of the objective function (see Section 5.2) and provides initial guesses for the later used reference point method (see Section 5.3).

5.2 Scaling of the objectives

In order to balance the different components of the objective \(\phi \), we suggest to use ideal and nadir points (see e.g. [18]) to scale the objective. This helps to provide a proper distributed approximation of the Pareto front.
Definition 2. (Ideal and nadir point)

(i) The vector \(\phi^{id} \in \mathbb{R}^k \) with \(\phi_j^{id} = \min \{ v_j | v = (v_1, \ldots, v_k) \in \phi(P) \} \) for all \(j \in \{1, \ldots, k\} \) is called ideal point of the multiobjective optimization problem.

(ii) The vector \(\phi^{na} \in \mathbb{R}^k \) with \(\phi_j^{na} = \max \{ v_j | v = (v_1, \ldots, v_k) \in \phi(P) \} \) for all \(j \in \{1, \ldots, k\} \) is called nadir point of the multiobjective optimization problem.

These points define bounds for the Pareto front in the sense of \(\phi(P) \subseteq [\phi^{id}, \phi^{na}] \). In order to keep the range of each component \(J_j \) normalized, we introduce the following scaling function \(s : \mathbb{R}^k \rightarrow \mathbb{R}^k \):

\[
s(\phi(x)) := \left(\frac{\phi_1(x)}{\phi_1^{id} - \phi_1^{id}}, \ldots, \frac{\phi_k(x)}{\phi_k^{na} - \phi_k^{id}} \right)^T
\]

such that \(s(\phi(P)) \subseteq [s(\phi^{id}), s(\phi^{na})] \) with \(s(\phi^{na}) - s(\phi^{id}) = 1 \). Analogously, a scaling function can be defined by using the ideal and nadir points provided by the roughly approximated Pareto front \(\phi(P_d) \) instead of \(\phi(P) \). In the following, we always use the scaled objectives but shortly write \(\phi \) instead of \(s(\phi) \).

5.3 Reference point method

Besides for scaling, a point \(x_d^* \in P_d \) of the roughly approximated Pareto set is used to select a reference point \(r_0 \in \mathbb{R}^k \setminus \phi(S) \) with \(r_0 < \phi(x_d^*) \). A reference point can be viewed as a desirable but, for the considered problem utopic value of the objectives and can be selected e.g. by

\[
r_0 := \phi(x_d^*) - \lambda l_1,
\]

with \(\lambda > 0 \). Figure 2 (b) shows the selection of three different reference points according to equation (21) for the example described in Section 6. The direction \(-1 \) in equation (21) is intended to gain a reference point providing an improvement in all of the scaled objectives for the vector \(x_0 \) that solves the following euclidean distance

\[
x_0 := \arg \min_{x \in S} \| \phi(x) - r_0 \|.
\]

The approximated Pareto point \(x_d^* \in P_d \) is used as an initial guess for the distance minimization (22) and the resulting vector \(x_0 \) is (locally) Pareto optimal in the case of an utopic reference point \(r_0 \), indicated by a positive distance \(\| \phi(x_0) - r_0 \| > 0 \). In this case, the procedure can lead to a reference point \(r_0 \) and corresponding (local) Pareto points \(x_0, \phi(x_0) \) (see Figure 1 (a)) which are used as starting points for the continuation in order to evolve an approximation of the whole Pareto set.

The following continuation algorithm (similarly given in [8]) uses Pareto and corresponding reference points to compute further points in their vicinity. The algorithm requires and returns a ’passive’ set \(P_0 \) and an ’active’ set \(P_1 \), each of them containing corresponding Pareto and reference points. It moves a tuple of points \((x_0, \phi(x_0), r_0) \in P_1 \) from the active set to the passive set, generates new point tuples in its vicinity and adds them to \(P_1 \). Using the algorithm iteratively leads to a stepwise better approximation of the Pareto set and front represented via the points in \(P_0 \) and \(P_1 \). No further steps are necessary if \(P_1 \) runs empty or if the desired part of the Pareto front is approximated. Sorting out dominated points between each step can help to speedup the algorithm. Initially, the passive set is empty and the previously computed reference and Pareto points \(r_0, x_0, \phi(x_0) \) can be used to define the active set \(P_1 \).

Algorithm 1.

\[
\text{procedure REFERENCE_POINT_METHOD}(P_0, P_1, l_0, l_1, \delta, \text{spread})
\]

if \((r_0, x_0, \phi(x_0)) \in P_1 \) then

\[
P_1 \leftarrow P_1 \setminus \{ (r_0, x_0, \phi(x_0)) \}\\
P_0 \leftarrow P_0 \cup \{ (r_0, x_0, \phi(x_0)) \}
\]

\[
\eta \leftarrow \phi(x_0) - \phi(x_0)
\]

compute \(\nu_1, \ldots, \nu_{k-1} \) such that \(\text{span}(\nu_1, \ldots, \nu_{k-1}) = \eta l_1 \)

\[
R \leftarrow \text{GET_REFERENCE_POINTS}(\phi(x_0), \eta, \nu_1, \ldots, \nu_{k-1}, l_0, l_1, \text{spread})
\]

for all \(r^* \in R \) do

if \(\text{CHECK_REFERENCE_POINT}(P_0, P_1, r^*, l_1, \delta) \) then

\[
x^* \leftarrow \arg \min_{x \in S} \| \phi(x) - r^* \|
\]

if \(\| \phi(x^*) - r^* \| > 0 \) then

\[\]

\[1\]Using the square \(\| \phi(x) - r_0 \|^2 \) instead is useful to guaranty differentiability also in the case of \(\phi(x) = r_0 \).

\[2\]e.g. with a QR-decomposition
Figure 1. Schematic functioning of the reference point method (the black curve is the unknown Pareto front, black dots are Pareto points and the crosses are reference points): (a) The given reference point \(r_0 \) and its corresponding Pareto point \(\phi(x_0) \). (b) The computed normal vector \(\eta \) and its orthogonal complement \(v \). (c) The shifted tangent space and the new reference points \(r^* \). (d) The newly computed Pareto points \(\phi(x^*) \).

\[
P_1 \leftarrow P_1 \cup \{(r^*, x^*, \phi(x^*))\}
\]

end if
end if
end for
end if
return \(\{P_0, P_1\} \)
end procedure

The algorithm makes successive use of two methods. CHECK_REFERENCE_POINT\((P_0, P_1, r^*, l_1, \delta)\) checks if there already exist reference points \(r \in P_0 \cup P_1 \) with \(\|r - r^*\| \leq l_1 \delta \) and returns 0 if so and 1 otherwise. That helps to avoid supplementary time consuming distance minimizations for very similar reference points. A tolerance factor \(\delta \in (0, 1] \) avoids that each reference point is sorted out. The method GET_REFERENCE_POINTS\((\phi(x_0), \eta, \nu_1, \ldots, \nu_{k-1}, l_0, l_1, \text{spread})\) is given explicitly as follows:

Algorithm 2. procedure GET_REFERENCE_POINTS\((\phi(x_0), \eta, \nu_1, \ldots, \nu_{k-1}, l_0, l_1, \text{spread})\)

\[
R = \{\}
\]

for all \(b \in \{-1, 0, 1\}^{k-1} \) with \(1 \leq \|b\|_1 \leq \text{spread} \) do

\[
v = \sum_{i=1}^{k-1} b_i \nu_i
\]

\[
r^* = \phi(x_0) + l_0 \frac{\eta}{\|\eta\|} + l_1 \frac{v}{\|v\|}
\]

\[
R \leftarrow R \cup \{r^*\}
\]

end for

return \(R \)
end procedure

Algorithm 2 returns a set of new reference points \(R \) which are computed using a linear combination of an approximated normal \(\eta \) and a vector \(v \) tangential to the Pareto front (cf. Figure 1 (b)). The multipliers \(l_0 \) and \(l_1 \) represent the distance of the shift in the direction of the approximated normal and the distance in the approximated tangential direction. Both multipliers influence the accuracy of the approximated Pareto set and front. Due to the scaling of the objectives (20), \(l_0 \) and \(l_1 \) are selected independently from the directions of \(\eta \) and \(v \). The parameter spread restricts the maximal number of basis vectors \(\nu_i \) involved in the computation of each \(v \). The method is suitable for every dimension \(k > 1 \) and a schematic functioning of the selection of new reference points is given in Figure 1 for \(k = 2 \). The strategy is used to compute the Pareto set of a 4-body kinematic chain in the next section.

6 Problem: 4-body kinematic chain

The considered problem is a kinematic chain of four rigid bodies, interconnected by two revolute joints and one spherical joint (see Figure 3 and 4 (b)). The initial and final conditions (translation and rotation) are fully specified such that the kinematic chain moves from a straight to a closed position, performing a rest to rest maneuver in the presence of gravity. We minimize two objectives, the control effort \(J_1 \) for the entire maneuver and the required maneuver time \(J_2 \), given here.
in discretized form:

\[
J_{d1}(u_d, \tau_d, l_N) = \frac{l_N - l_0}{N - 1} \sum_{i=1}^{N-1} \| \tau_i \|^2
\]

(23)

\[
J_{d2}(u_d, \tau_d, l_N) = l_N
\]

(24)

The redundant coordinates are of the following form \(q = (q^1, \ldots, q^4) \in \mathbb{R}^{48} \) with \(q^j = (\varphi^j, d^j_1, d^j_2, d^j_3) \in \mathbb{R}^{12} \), a displacement \(\varphi^j \in \mathbb{R}^3 \), and orthogonal directors \(d^j_1, d^j_2, d^j_3 \in \mathbb{R}^3 \) for each body \(j \in \{1, \ldots, 4\} \). Similar for the redundant forces \(f \in \mathbb{R}^{48} \). The complexity of the system is reduced by a reparametrisation to generalized coordinates \(u = (u^1, u^2, \theta^{R^1}, u^{S^2}, \theta^{R^3}) \in \mathbb{R}^{11} \) and generalized forces \(\tau = (\tau^1, \tau^2, \tau^{R^1}, \tau^{S^2}, \tau^{R^3}) \in \mathbb{R}^{11} \) with a displacement and a rotation of the first (left) body \(u^1, u^2 \in \mathbb{R}^3 \) and rotations \(u^{S^2} \in \mathbb{R}^3, \theta^{R^1}, \theta^{R^3} \in \mathbb{R} \) between the bodies. The reparametrisation in combination with using the input transformation and the null space matrix as in Section 3 reduce the number of the discretized parameters for \(N + 1 = 15 \) time nodes from \(48(2N + 1) + 1 + 37N = 1911 \) with discretized Lagrange multipliers to \(11(2N + 1) + 1 = 320 \) without Lagrange multipliers. The generalized forces are bounded by

\[-10 \leq \tau \leq 10 \]

The displacement by

\[\frac{1}{2} \leq u^1 \leq \frac{1}{2} \]

and the rotations by

\[-\frac{\pi}{2} \leq \left(u^1, \theta^{R^1}, u^{S^2}, \theta^{R^3} \right) \leq \frac{\pi}{2} \]

6.1 Numerical results

The method is implemented in Matlab and uses ADiMat algorithmic differentiation [25] for the computation of the sparse Jacobian of the nonlinear constraint function defined by (15)-(17). In order to compute a rough approximation of the feasible set, we use SQP to solve \(\min_{x \in S} 1 \) with random initial guesses, each of them already fulfilling the lower and upper bounds. Using various stricter bounds can help to yield a better approximation, at least for the considered example. Figure 2 (a) depicts the computed points in image space and highlights the not dominated and the ideal and nadir point.

The scaling in equation (20) with \(s(J_d) = (0.2781J_{d1}, 5.9775J_{d2})^T \) balances the objective function. We select three not dominated points for the distance minimization (22) and the required reference points similar as in equation (21), with a scalar \(\lambda \) such that \(\tau_0 \) lies on one of the axes \((x = 0 \text{ or } y = 0)\). Figure 2 (b) illustrates the selection of the not dominated and the reference points. This leads to three (local) Pareto points depicted in Figure 2 (c) in blue, red, and black. We use each of the resulting points to define the initial active set \(P_1 \) separately and alternately apply the reference point method (Algorithm 1 with \(l_0 = l_1 = 0.05 \)) and a test of dominance on the union of the resulting active and passive sets \(P_1 \) and \(P_0 \). This finally leads to an approximation of the Pareto set depicted in Figure 2 (d) in blue, red and black. Each Pareto point is colored according to the corresponding starting point of the continuation (c.f. Figure 2 (c)). Three 'types' of different trajectories can be detected in the space of the redundant coordinates (Figure 4 (b) in blue, red, and black). The corresponding control profiles for 15 selected trajectories are given in Figure 4 (a). The movement is depicted exemplary in Figure 3 for selected trajectories with \(J_d = (0.1681, 0.0286) \) in blue, \(J_d = (0.1834, 0.0283) \) in red, and \(J_d = (0.1500, 0.0296) \) in black and the corresponding Pareto points are highlighted in Figure 2 (d). Probably these 'types' represent local smooth connected parts of the Pareto set.

7 Conclusions

In this work, we present a numerical approach to multiobjective optimal control of multibody dynamics. We combine the optimal control method DMOC with a reference point method and provide different initial guesses by a rough approximation of the feasible set. A scaling assists to produce an even distribution of Pareto points that approximate the Pareto front of the considered multibody problem. The strategy works well in providing different 'types' of Pareto optimal solution trajectories. It allows the decision maker to select a trajectory by means of the objective value and the 'type' of the trajectory.

In the future, we plan to test our strategy on other high dimensional multibody problems, also problems with more than two objectives and a combination with mixed integer to represent contact problems are intended. Moreover, we want to investigate different approaches on approximating the feasible set with the aim to identify all the different 'types' of Pareto optimal trajectories with similar objective values.
Figure 2. Objective space of the four body kinematic chain: (a) Unscaled, roughly approximated feasible set (gray dots) with not dominated points (gray circles), ideal and nadir points (green crosses). (b) Scaled, with points selected to be improved (blue, red, and black circles) and reference points (blue, red, and black crosses). (c) Scaled, with improved points (blue, red, and black stars). (d) Unscaled, Pareto front (blue, red, and black stars) for different ‘types’ of trajectories. Movements of selected Pareto points for each type (blue, red, and black squares) are given in Figure 3.

Figure 3. Selected movements for three ‘types’ of Pareto optimal trajectories of the four body kinematic chain at the time nodes: 1, 5, 8, 11 and 15. Trajectories with $J_d = (0.1681, 0.0286)$ in blue in the first row, with $J_d = (0.1834, 0.0283)$ in red in the second row, and with $J_d = (0.1500, 0.0296)$ in black in the third row.
Figure 4. Three ‘types’ of Pareto optimal trajectories of the four body kinematic chain: (a) Square of the norm of five selected generalized forces for each ‘type’. (b) Trajectories of redundant coordinates for each ‘type’.

8 Acknowledgement

The second author acknowledges support from the Collaborative Research Center 614 Self-Optimizing Concepts and Structures in Mechanical Engineering University of Paderborn, funded by the Deutsche Forschungsgemeinschaft.

References

