Optimal Control of Standing Jump Movements

Michael W. Koch, Sigrid Leyendecker

Chair of Applied Dynamics, University of Erlangen-Nuremberg, Konrad-Zuse-Str. 3/5, D-91052 Erlangen, Germany:
Michael.Koch,Sigrid.Leyendecker@ltd.uni-erlangen.de

Abstract

The optimal control of human locomotion requires simulation techniques, which handle the contact’s establishing and releasing between the foot and the ground. In this work, we consider a monopedal jumper modelled as a three-dimensional rigid multibody system with contact and simulate its dynamics using a structure preserving method. The applied mechanical integrator is based on a discrete constrained version of the Lagrange-d’Alembert principle, which yields a symplectic momentum preserving method (see [13] for details). The investigated contact formulation covers the theory of perfectly plastic contacts. To guarantee the structure preservation and the geometrical correctness, the non-smooth problem is solved including the contact configuration, time and force, in contrast to relying on a smooth approximation of the contact problem via a penalty potential. Due to the unknown periods for the jump-off, the flight and the landing phase, the optimal control problem is formulated with variable time steps so that the optimiser determines the optimal time flow of the jumping movement. The simple model of a monopedal jumper allows to investigate standing jumping movements, in particular, standing high jumps and standing long jumps are considered in this work.

Keywords: structure preservation, perfectly plastic contact, monopedal jumper, optimal control

1 INTRODUCTION

The human environment consists of a large variety of mechanical and biomechanical systems, in which different types of contact can occur. The biomechanical literature is often focussed on the function and structure of the human locomotor system in combination with the foot-ground contact, whereby cyclic walking movements come to the fore [5, 15]. Here, we are interested in jumping movements as e.g. in [1]. In contrast to movements with rolling wheels, the simulation of locomotion with legs requires the knowledge, how the contact’s establishing and releasing between the foot and the ground works. The investigated contact formulation covers the theory of perfectly plastic contacts (e.g. see [7]), which means that the foot stays in contact with the ground for a certain time.

The reduction to a monopedal jumper implicates the minimal multibody system to simulate humanlike jumping movements. The jumper model consists of an upper body representing the jumper’s torso and the leg consists of two rigid bodies, which are connected at the knee joint. The inclusion of the knee joint leads to movements that differs from those considered e.g. in [6, 12], which are technically oriented jumpers. The optimally controlled jumper allows actuation in the hip and the knee joint, such that a physiologically motivated cost function is minimised. In the numerical solution, a direct transcription method is used to transform the optimal control problem into an optimisation problem being constrained by the fulfilment of discrete equations of motion, boundary conditions and path constraints, see e.g. [9, 16]. The jumping motions are subdivided in three phases and they are called jump-off, flight and landing phase. To avoid an artificial restriction of the optimisation problem’s phases by prescribing the time of contact establishing or releasing, variable time steps are used, wherefore three scaling parameters being part of the optimisation parameters are used.

The exemplary investigated jumps are restricted to standing jump movements. Historically, the standing high jump and long jump are part of the Olympic disciplines at the beginning at the 20th century. The course of motions of both jumps, are very similar, which means, that a general optimal control problem can be defined to handle the contact and flight phases of the jumping movements. During the contact phases, the fulfilment of Coulomb’s static friction law has to be fulfilled and in case of the long jump, the static friction influences the evolution of the actuation and consequently the maximum jump length. In [11], the optimal control problem is solved for a monopedal jumper, whose torso is supported by a prismatical joint. The comparison of the different trajectories and control sequences for the high jump shows clearly the differences of the used multibody systems and physical assumptions. Consequently, the results in this paper fit very well with the real standing jump movements and are much better than the previous results.

Section 2 describes briefly the multibody formulation in redundant coordinates and introduces a corresponding actuation force formulation. The symplectic momentum integrator and the null space method with nodal reparametrisation, which reduces the numerical effort, are introduced in Section 3. Section 4 covers the optimal control problem and explains
shortly the transfer into a finite dimensional optimisation problem. The simple monopedal jumper model is described in Section 5 and the discrete equations of motion corresponding to the perfectly plastic contact for the variational approach are given. In Section 6, the general optimal control problem is transformed into an optimisation problem with variable time steps. The results for the standing high jump as well as for the standing long jump are presented in the corresponding sections.

2 RIGID MULTIBODY CONFIGURATION AND ACTUATION

In this work, the rotation free formulation introduced in [2] for rigid bodies and in [4] for rigid multibody systems is used to describe the multibodies configuration to simulate the multibody dynamics. The \(\alpha \)-th rigid body is specified by a configuration vector \(q^\alpha(t) \in \mathbb{R}^{12} \) composed by the placement of its center of mass \(\varphi^\alpha(t) \) and the right-handed director triad \(d_i^\alpha(t) \) for \(i = 1, 2, 3 \). The director triad specifies the body’s orientation in space and has to stay orthonormal during the motion in the considered time interval \([t_0, t_N]\), which is guaranteed by six so-called internal constraints \(g_{int}(q) = 0 \in \mathbb{R}^6 \).

In multibody systems, the rigid bodies are interconnected by different types of joints, e.g. revolute or spherical joints. The interconnection of the rigid bodies as well as their rigidity gives rise to a scleronomic and holonomic constraint function \(g(q) \in \mathbb{R}^{m} \) on the redundant configuration variable \(q \in \mathbb{R}^k \), where \(k \) equals 12 times the number of bodies. The multibody systems are actuated directly by the independent generalised forces and torques \(\tau \in \mathbb{R}^{k-m} \) and the resulting \(k \)-dimensional redundant actuation \(f(q) \in \mathbb{R}^k \) can be computed via \(f(q) = B^T(q) \cdot \tau \) with the input transformation matrix \(B^T(q) \in \mathbb{R}^{k \times (k-m)} \). Note that the transformation matrix depends on the rigid bodies’ interconnection and it is described in detail in [13].

3 STRUCTURE PRESERVING INTEGRATION FOR CONSTRAINED MECHANICAL SYSTEMS

The dynamics of time-continuous mechanical systems can be described using the Lagrangian or Hamiltonian formalism – in this work, the discrete Lagrangian mechanics is used to derive a structure preserving integrator, see e.g. [14]. The constrained mechanical system is considered in a configuration manifold \(Q \subseteq \mathbb{R}^k \) with the time-dependent configuration vector \(q(t) \in \mathbb{Q} \). Corresponding to the approach in [13], the constrained version of the Lagrange-d’Alembert principle is discretised at the time nodes \(\{t_0, t_1 = t_0 + \Delta t, \ldots, t_n = t_0 + n\Delta t, \ldots, t_N = t_0 + N\Delta t\} \), where \(N \in \mathbb{N} \) is the number of time intervals and the discrete configurations \(q_n \approx q(t_n) \) approximate the continuous trajectory. Similarly, \(\lambda_n \approx \lambda(t_n) \) approximates the Lagrange multipliers \(\lambda \in \mathbb{R}^m \). As usual in the context of discrete variational mechanics, the discrete Lagrangian \(L_d : Q \times Q \to \mathbb{R} \) is an approximation to the action integral of the continuous Lagrangian over one time-interval. The discrete Lagrange-d’Alembert principle requires stationarity of the resulting action sum, i.e.

\[
\delta S_d = \delta \left[\sum_{n=0}^{N-1} L_d(q_n, q_{n+1}) - \frac{1}{2} \left(t_{n+1} - t_n \right) \left[g^T(q_n) \cdot \lambda_n - g^T(q_{n+1}) \cdot \lambda_{n+1} \right] \right] + \sum_{n=0}^{N-1} f_n^- \cdot \delta q_n + \sum_{n=0}^{N-1} f_n^+ \cdot \delta q_{n+1} = 0
\]

for all variations \(\delta q_n \) and \(\delta \lambda_n \). This leads to the \((k+m)\)-dimensional constrained forced discrete Euler-Lagrange equations

\[
D_2L_d(q_{n-1}, q_n) + D_1L_d(q_n, q_{n+1}) - G^T_d(q_n) \cdot \lambda_n + f^+_n - f^-_n = 0
\]

\[
g(q_{n+1}) = 0,
\]

for \(n = 1, \ldots, N-1 \). Here \(G_d = \frac{1}{2}(t_{n+1} - t_n-1) \frac{\partial g(q_n)}{\partial q} \) denotes the \((m \times k)\)-dimensional Jacobian matrix of the constraints, and \(f_n^- = \frac{1}{2}(t_{n+1} - t_n) B^T(q_n) \cdot \tau_n \), respectively \(f_n^+ = \frac{1}{2}(t_n - t_{n-1}) B^T(q_n) \cdot \tau_{n-1} \) are called left and right discrete forces. The resulting mechanical integrator represents exactly the behaviour of the analytical system concerning the consistency of the momentum maps and symplecticity. Due to these preservation properties it is called symplectic momentum scheme. A further benefit of this mechanical integrator is the good energy behaviour, which means that there is no numerical gaining or dissipation of energy.

According to [3, 4], we apply the discrete null space method to reduce the dimension of the constrained forced discrete Euler-Lagrange equations. The discrete null space matrix \(P \in \mathbb{R}^{k \times (k-m)} \) fulfils the property \(G_d \cdot P = 0 \) and
premultiplying Equation (1) by the transposed null space matrix, the constraint forces and thereby the Lagrange multipliers vanish. The resulting \(k \)-dimensional system is called reduced forced discrete Euler-Lagrange equations. The minimal dimension of the system can be achieved using the vector of incremental generalised coordinates \(u_{n+1} \in U \subset R^{(k-m)} \) to reparameterise the configuration vector \(q_{n+1} \) in the neighbourhood of \(q_n \). The nodal reparameterisation function \(F_d : U \times Q \rightarrow Q \)

\[
q_{n+1} = F_d(u_{n+1}, q_n)
\]

fulfils the constraint conditions and therefore Equation (2) becomes unnecessary. Finally, the number of unknowns and thereby the numerical effort is reduced by the formulation in discrete generalised coordinates \(u \). The dimension of the equations of motion is reduced to \(k - m \).

\[
P^T(q_n) \cdot [D_2 L_d(q_{n-1}, q_n) + D_1 L_d(q_n, F_d(u_{n+1}, q_n))] + f^+_{n-1}(q_n, \tau_{n-1}) + f^-(q_n, \tau_n)] = 0
\]

4 OPTIMAL CONTROL PROBLEM

In general, the goal of optimal control problems is to determine the optimal state trajectory and force field for the holonomic constrained systems, which move from the initial state \(q(t_0) = q_0, \dot{q}(t_0) = q_0 \) to a final state \(q(t_0) = q_N, \dot{q}(t_N) = q_N \). The investigated system fulfils the equations of motion and at the same time the objective functional

\[
J(q, \dot{q}, f) = \int_{t_0}^{t_N} C(q, \dot{q}, f) \, dt
\]

is minimised, where the integrand \(C(q, \dot{q}, f) : TQ \times T^*_Q Q \rightarrow R \) is a given cost function. The optimal control problem is solved using a direct transcription method, which transforms it into a constrained optimisation problem. The discrete objective function approximates the integral of the continuous cost function and the discrete constrained optimisation problems reads

\[
\min_{u_d, \tau_d} J(u_d, \tau_d) = \min_{u_d, \tau_d} \sum_{n=0}^{N-1} \mathcal{C}(u_n, u_{n+1}, \tau_n),
\]

subject to the constraints given by the reduced discrete equations of motion of the symplectic momentum scheme in Equation (4). In addition to the discrete equations of motion of the specific mechanical integrator, further constraints, like initial conditions, final conditions and possible equality and inequality path constraints can be imposed.

5 MONOPEDAL JUMPER

Often, the human locomotor system is is modelled as a bipedal multibody system. Here, we decide to investigate monopedal jumping. The reduction to a monopedal jumper implicates the minimal multibody system to simulate humanlike jumping movements. The resulting three-dimensional model of the monopedal jumper consist of three rigid bodies, which represent the calf, thigh and torso, see Figure 1, and the physical parameters of the three rigid are listed in Tab. 1.

The human knee joint is modelled as a revolute joint, where the unit vector \(n \) in body 2 specifies the axis of rotation and the hip is modelled by a spherical joint. Note that in reality, the possible angles of anatomical joints are restricted, accordingly, in case of the optimal control problem, an inequality constraint function \(h_{3id}(q) < 0 \in R \) prevents the human knee’s super-extension. Compared with the monopedal jumper in [11], for which the upper part of the body is supported by a prismatical joint, the herein discussed jumper model enables a more realistic motion. The constrained system of the jumper is described by the configuration variable \(q \in R^{36} \) and due to the used rigid body formulation, \(m_{ext} = 18 \) internal constraints are present. The anatomical joint interconnections and the fixing of the foot at the ground cause \(m_{ext} = 8 \) external constraints and therefore the three-dimensional system is restricted by \(m = 26 \) holonomic constraints. Corresponding to the \(k - m = 10 \) degrees of freedom, the generalised coordinates read

\[
u = \begin{bmatrix} u^1 \\ \theta^1 \\ \theta^2 \\ \theta_R \end{bmatrix} \in R^{10} \text{ and } \tau = \begin{bmatrix} \tau_S \\ \tau_R \end{bmatrix} \in R^4
\]

represents the generalised actuation in the hip and the knee joint of the monopedal during the jump movement, which means there is no external actuation. The contact between the foot and the ground is modelled as a perfectly plastic
contact, which means, that during the contact phase the foot is fixed at the ground by a spherical joint. The corresponding constraints function reads $g(q_n) = \varphi_3^n + \varphi_3^S - x_S = 0 \in \mathbb{R}^3$ and the resulting contact force is computed as $f_S(q) = G_C^T(q) \cdot \lambda_S \in \mathbb{R}$. Finally, the constrained forces are summarised as

$$f_C(q) = G_C^T(q) \cdot \lambda_C = G_T(q) \cdot \lambda + G_S^T(q) \cdot \lambda_S$$

and as a result of the contact, the degrees of freedom are reduced to $k - m - 3 = 7$. Analogous to the Equations (1)-(2), the resulting constrained discrete Euler-Lagrange equations are extended to a $k + m + 3$ dimensional system and reading

$$D_2 L_d(q_{n-1}, q_n) + D_1 L_d(q_n, q_{n+1}) - (G_C^T(q_n) \cdot \lambda_n - G_S^T(q_n) \cdot \lambda_S + f_{n-1}^+ + f_n^- = 0$$

$$g(q_{n+1}) = 0$$

$$g_S(q_{n+1}) = 0.$$

The contact force immobilises the jumper’s foot at x_S and its function is to prevent the penetration of the ground, thereby the third component of the Lagrange multiplier is negative ($\lambda_{3S} < 0$), details can be found in [11].

6 OPTIMAL CONTROL OF THE MONOPEDAL JUMPER

In this section, the optimal control problem for the monopedal standing high jump and long jump is described in a general formulation. The jumper is actuated in the hip and in the knee joint only and the whole optimal control problem starts at rest and the foot is in contact with the ground, which is modelled as a perfectly plastic contact. As it is illustrated in Figure 2, the optimal control problem considers a motion with two contact phases – called as jump-off and landing phase – and a flight phase. The essential differences between the two jumping movements concerns the flight phase, whereby in case of the the long jump the maximum jump length is required at the end of the flight phase. Considering the high jump movement, the maximum jump height is requested during the flight phase.

The constrained optimisation problem is formulated in terms of the discrete generalised coordinates u_d and actuations τ_d corresponding to Equation (6). During the flight phase, the dynamical constraints are given by Equation (4) which is a 10-dimensional system of equations. A described in Section 4, also the two contact phases at the beginning and at the

![Figure 1: Model of the three-dimensional jumper and its generalised coordinates.](image)

Figure 1: Model of the three-dimensional jumper and its generalised coordinates.

<table>
<thead>
<tr>
<th>physical quantity</th>
<th>calf</th>
<th>thigh</th>
<th>torso</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass [kg]</td>
<td>3.2800</td>
<td>6.8600</td>
<td>28.2055</td>
</tr>
<tr>
<td>moment of inertia [kgm²]</td>
<td>0.0490</td>
<td>0.1238</td>
<td>0.1368</td>
</tr>
<tr>
<td>I_{e1}</td>
<td>0.0504</td>
<td>0.1188</td>
<td>0.1368</td>
</tr>
<tr>
<td>I_{e2}</td>
<td>0.0037</td>
<td>0.0229</td>
<td>0.9035</td>
</tr>
</tbody>
</table>

Table 1: Physical quantities of the calf, thigh (taken from [17]) and the human torso (taken from [8] with a total weight of 64.90 [kg]).
end of the manoeuvre need to be described using discrete equations of motion of minimal dimension. Analogous to the procedure during the flight phase, here the forced discrete Euler-Lagrange equations are premultiplied by the contact null space matrix \(P_C(q_n) \in \mathbb{R}^{36 \times 7} \), consequently the constraint forces including the contact forces vanish (see Equation (7)). The further reduction is achieved by applying the nodal reparametrisation of the flight phase \(P^F \) from Equation (3), which fulfills the internal and external constraints \(g(q_{n+1}) = 0 \in \mathbb{R}^{29} \). Thus, the forced discrete equations of motion during the jumping and the landing phase are also reduced to a 10-dimensional system. At this point it should be mentioned, that during both contact phases, the discussed monopedal jumper has seven degrees of freedom. However, a maximal reduction would require a new nodal reparametrisation which is highly nonlinear (involving trigonometric functions). The experience has shown that it is easier and faster for the optimiser to work with a slightly larger number of dynamical constraints being less nonlinear as in equation (7).

In case of the forward dynamics simulation (described in [11]), the contact force prevents the penetration of the ground and as soon as the contact force changes its algebraic sign, the algorithm computes a contact release time and configuration. During the contact phases of the optimal control problem, inequality path constraints guarantee the correct orientation of the contact force, i.e. the correct sign of the Lagrange multiplier \(\lambda_{S_n}^3 \) must be equal to zero. During the contact phases, further inequality path constraints ensure the fulfillment of Coulomb’s static friction law, i.e. the relation between the contact Lagrange multipliers \(\| \lambda_{S_n}^3 \| < \mu_0 \| \lambda_{S_n}^3 \| \) is fulfilled for a given static friction coefficient \(\mu_0 \in \mathbb{R} \). However, due to the premultiplication by the contact null space matrix \(P_C(q_n) \), the contact force is eliminated from Equation (7). Thus, the corresponding Lagrange multipliers must be recalculated after every time step to be able to check whether \(\lambda_{S_n}^3 \) has the correct sign and to guarantee that the inequality path constraints are fulfilled for the optimal control problem during the contact phase. The contact Lagrange multipliers can be calculated via

\[
\lambda_{S_n} = S^T(q_n) \cdot \left[D_2 L_d(q_{n-1}, q_n) + D_1 L_d(q_n, q_{n+1}) + f_{n-1}^p + f_n^p \right],
\]

with

\[
S(q_n) = G_C^T(q_n) \cdot \left(G_C(q_n) \cdot [G_C(q_n)]^T \right)^{-1} \in \mathbb{R}^{36 \times 29}.
\]

The boundary conditions \(h_{1d}(q_0, p_0) = 0 \in \mathbb{R}^2 \) guarantee an initial state \(q(t_0) = q^0, p(t_0) = p^0 \) of the jumper, whereby \(p^0 \in \mathbb{R}^{36} \) represents the conjugate momentum at the initial configuration. The initial configuration is not exactly prescribed but the monopedal jumper is characterised by an almost upright posture and the total center of mass is located inside a virtual footprint area. The inequality conditions \(h_{2d}(q_N) \in \mathbb{R}^2 \) at the end of the jumping manoeuvre ensure also an almost upright configuration and the virtual footprint area limits the position of the total center of mass.

As a simplification of the optimal control problem, a path constraint function \(h_{2d}(q_n) = 0 \) is used to restrict the jumping movement into the \((e_1, e_3)\)-plane and therefore the jumper is only actuated by torques in the \(e_2\)-direction and this means for high jump, that the sidewise jump motion is not part of the optimal control problem. The actuation of the monopedal jumper during the contact phase at the beginning of the manoeuvre has an essential effect on the time of release and on the motion of the total center of mass concerning length and height of the optimised standing jump. The optimal contact release time, the optimal landing time and the whole jumping time are not known a priori, due to that, they are part of the optimal control problem. To realise this in the implementation, the node number \(N_{e} \) of the contact release time node \(t_{N_e} \) is predefined, but the physical time \(t_{N_e} \) itself is an unknown which has to be determined by the optimisation. We use the same approach to implement the unknown time of the establishing contact, which is predefined at the time node \(t_e \). Thus, the three scaling parameters \(\sigma_1, \sigma_2, \sigma_3 \in \mathbb{R} \) are part of the optimisation variables and these enables the optimiser to shorten or to extend each phase of the jumping movement (see Figure 2). Finally, the constrained optimisation problem of the monopedal jumpers reads

\[
\min_{u_d, \tau_d, \sigma_1, \sigma_2, \sigma_3} \tilde{J}_d(u_d, \tau_d, \sigma_1, \sigma_2, \sigma_3)
\]

subject to

reduced forced discrete equations of motions during the jump-off phase for \(n = 1, \ldots, N_e \) and the landing phase for \(n = N_e, \ldots, N - 1 \)

\[
P_C^T(q_n) \cdot \left[D_2 L_d(q_{n-1}, q_n) + D_1 L_d(q_n, q_{n+1}) + f_{n-1}^p + f_n^p \right] = 0
\]

(7)

\[
g_S(q_{n+1}) = 0
\]

reduced forced discrete equations of motions during the flight phase \(n = N_e + 1, \ldots, N - 1 \)

\[
P^F(q_n) \cdot \left[D_2 L_d(q_{n-1}, q_n) + D_1 L_d(q_n, q_{n+1}) + f_{n-1}^p + f_n^p \right] = 0
\]
initial and final conditions
\[h_{1d}(q_0, p_0) < 0 \quad \text{for } n = 1, \ldots, N \]
path constraints for \(n = 2, \ldots, N \)
\[h_{2d}(q_n) = 0 \]
path constraints
jump-off
\[h_{3d}(q_n) = 0 \quad \text{for } n = 1, \ldots, N_k \]
flight phase
\[h_{4d}(q_{N_k}) < 0 \]
landing phase
\[h_{3d}(q_n) < 0 \quad \text{for } n = N_k + 1, \ldots, N - 1 \]
\[g_s(q_n) > 0 \]
the limit inequalities ensure that the time steps \(\sigma_1 \Delta t \) and \(\sigma_3 \Delta t \) during the contact phases and \(\sigma_2 \Delta t \) during the flight phase do not degenerate too small or large. This also yields a lower and upper bound on the total manoeuvre time. An additional equality constraint could be used to ensure a particular prescribed total manoeuvre time, however this is not imposed for the considered example.

6.1 Standing high jump

The optimal control problem of the standing high jump consists of \(N = 70 \) time nodes, whereby the contact release takes place at the node number \(N_n = 20 \) and the landing phase is initiated at the \(N_n = 60 \)-th time node. At node \(N = 40 \) a minimal height is prescribed \(h_{\text{min}}(q_{N_n}) < 0 \), but this inequality condition does not exclude that a higher jump height is possible. The start is at rest with the foot fixed at the ground in \(x_S = [0; 0; 0]^T \). The choice of the optimal start configuration for the different jumps is left to the optimiser with the inequality constraint of the total center of mass being located above the virtual footprint area. The boundary conditions at the end of the motion constrain the centre of mass of the upper part of the body to a minimum height of 1.18 m to guarantee an almost upright end position and the total center of mass must again be located inside the virtual footprint area. The discrete objective function for the monopedal jumpers is
\[\tilde{J}_d(u_d, \tau_d; \sigma_1, \sigma_2, \sigma_3) = \sum_{n=0}^{N-1} (t_{n+1} - t_n) \tau_n^T \cdot \tau_n, \quad (8) \]
and it represents the control effort. The inequality constraint function ensures a minimum jump height and the scaling parameters for the time steps in the different manoeuvre phases are bounded between 0.75 < \(\sigma_1, \sigma_2, \sigma_3 < 1.5 \). The restricted optimisation problem is solved in MATLAB using the \texttt{fmincon} algorithm in the \texttt{fmincon} function, which is part of the optimisation toolbox and the numerical accuracy is set to \(10^{-8} \).

The optimisation problem is solved for the two minimum jump heights 1.0 m and 1.5 m and the results are compared to each other in the following. Figure 3 depicts the described characteristic configurations and shows that the course of motion for the different heights is very similar during the contact phases. The motion corresponds to the torque and contact force evolution illustrated in Figure 4. As a result of the optimisation problem, the monopedal jumper’s leg at the initial configuration for the 1.5 m high jump is more bended and due to the prescribed minimal height, the actuation in the joints is greater than in the lower jump. The restriction of the jumping movement in consequence of Coulomb’s static friction is negligible because the total center of mass moves primarily upwards, one can see in Figure 4 that the horizontal forces corresponding to \(\lambda_3 \) stays almost zero at all times. For the different jump heights, the optimiser sets the first scaling parameter to 0.75, which is equal to the lower bound of the scaling parameters and consequently the contact is released after 0.1781 s for both optimisation problems. Figure 5 illustrates the motion of the foot and the total center of mass for both jump heights and obviously, the optimiser chooses different types for the motion of the jumper’s leg during the flight phases. In case of the lower jump height, the jumper attains the required jump height with a bended position of the leg –
the foot is below the total center of mass – in case of the 1.5 m height jump, the leg is nearly horizontal and the foot is in front of the upper part of the body. The illustration of the foot’s motions in Figure 5 for the different jump movements, shows that for each jump the rising and falling motions before and after attaining the highest jump height are similar. The torque evolution in Figure 4 reflects the observed leg’s motion, whereby especially the actuation for the 1.5 m high jump between the contact release and \(t_{N_1} \), respectively between \(t_{N_2} \) and the establishing of the contact are very similar (almost mirrored) to each other what corresponds to the almost identical foot during the rise and fall. The flight phases end at 0.7352 s, respectively 0.9281 s and the scaling parameters are \(\sigma_2 = 1.1235 \) and \(\sigma_2 = 1.5 \). The contact Lagrange multiplier of the lower high jump in Figure 4 indicates a high impact at the beginning of the landing phase. In contrast to that, the motion of the jumper’s leg for the higher jump absorbs the shock better and consequently the Lagrange multiplier \(\lambda_3^S \) is significantly smaller. The applied torques during the landing phase guarantee the final configuration and they are greater than the landing torques for the lower high jump. The scaling parameters are \(\sigma_1 = 0.75 \) for both jumps. The optimised objective value for the 1.0 m high jump is computed to \(4.9114 \cdot 10^4 \text{ (Nm)}^2 \text{s} \) and in the other case the objective function is about \(1.0377 \cdot 10^4 \text{ (Nm)}^2 \text{s} \), which is more than two times greater as the value of the cost function for the smaller height of 1.0 m.

Figure 3: Snapshots of the optimised motion for the jump height 1 m in a) and 1.5 m in b).

Figure 4: Evolution of the actuation torques and the contact Lagrange multipliers for the jump height 1 m in a) and 1.5 m in b).
6.2 Standing long jump

In this section, we investigate a standing long jump motion, which is discretised using $N = 60$ time nodes, the contact release begins at node number $N_c = 30$ and the landing phase begins at node $N_l = 50$. The motion starts at rest and during the jump-off phase, the foot is fixed at the ground in $x_S = [0; 0; 0]$. The monopedal jumper starts in a nearly upright position, whereby the torso’s center of mass is restricted to a minimum height of 1.18 m and the total center of mass is inside the virtual footprint area. The boundary condition at the end of the landing constrains the jumper to the upright position and the total center of mass is located inside the virtual footprint. According to Equation (8), the goal of the optimal control problem is to minimise the control effort. The different scaling parameters are bounded between $0.75 < \sigma_1, \sigma_2, \sigma_3 < 1.5$ and the static friction coefficient is set to $\mu_0 = 0.7$ (rubber/asphalt). The optimisation problem is solved using the sqp algorithm of the fmincon function and the numerical accuracy is set to 10^{-8}.

The optimisation problem is solved for the minimum jump lengths 1.0 m and 1.5 m, and the results are compared to each other. Figure 6 illustrates the boundary conditions, the corresponding configuration of the contact releasing and establishing and furthermore the configurations of the minimal and maximal height of the total center of mass at $n = 24$ and $n = 41$. The course of motion of both optimisation problems is very similar and depends directly on the required jumping length. The motions of the total center of mass and of the foot for the three phases are shown in detail in Figure 7 and illustrate the influence of the different jump length: in case of the longer jump, the leg at the jump-off phase is more bended, thus the total center of mass is lower than in the left plot. Furthermore, the configuration at the contact release for the 1.5 m jump is more leant forward as in the other case. During the flight phase, the jumper’s total center of mass achieves a higher vertical level and the motions during the landing phase differ marginally. The evolution of
the actuation torques for both problems are very similar and they are displayed in Figure 8. The optimiser extends the jump-off phases by the scaling parameters $\sigma_1 = 1.2416$, respectively $\sigma_1 = 1.3942$ for the longer jump. During the flight phase, the optimiser uses a scaling parameter of $\sigma_2 = 1.1239$ for the 1.0 m long jump and $\sigma_2 = 1.4604$ for the larger jump length and in the landing phase, σ_3 of both problems assumes the upper bound of 1.5. In Figure 8, the relation between the contact Lagrange multipliers λ_3 and λ_1 illustrates clearly the influence of Coulomb’s static friction law since λ_3 assumes the bound of $\mu_o \| \lambda_3 \|$ due to the forward jumping motion. The result is a restriction of the actuation torques during the jump-off phase, especially for the jump length of 1.5 m. The value of the objective function for the smaller jump length is about $3.9663 \cdot 10^3 \text{ (Nm)}^2 \text{s}$ and for the other optimisation problem the objective function value is about $6.6920 \cdot 10^3 \text{ (Nm)}^2 \text{s}$.

7 Conclusion

In this work, a variational integrator with structure preserving properties is used to investigate the standing high and long jump of a monopedal jumper in optimal control simulations. The contact between the foot and the ground during the...
contact phases is modelled by a perfectly plastic contact formulation. The optimal control problems of the standing jump movements are solved by a direct transcription method to transform them into optimisation problems, whereby the goal is to minimise the control effort. Three scaling parameter are introduced to optimise the duration of the jump-off, the flight and the landing phase and as a result, the whole motions are not artificially restricted. The solutions of the optimisation problems for the standing high and long jump reflect realistic jumping movements, especially the optimiser’s choice of the initial configurations for the high jump and the minimal height during the long jump’s jump-off phase fit with humanlike motions. The different leg’s motion in case of the high jump to achieve to predefined minimal jump high and the more leant forward position of the torso can be observed in reality.

References

