Proteins as Directed Spanning Trees

A rooted, directed spanning tree is an acyclic graph that connects each vertex to its parent by a single incoming edge. Edges are the torsional degrees of freedom (DoFs) that link vertices, each of them representing a rigid group of atoms. Hydrogen bonds are pertinent constraints that only allow the rotation about the bond axis. They form closed cycles, which require coordinated changes of the DoFs, rigidifying the protein.

\[
\begin{align*}
\mathbf{H}_L + \mathbf{X}_A &= (\mathbf{H}_R + \mathbf{X}_B) = 0 \\
\mathbf{H}_R - \mathbf{X}_A &= (\mathbf{H}_L - \mathbf{X}_B) = \text{const.} \\
\mathbf{X}_L - \mathbf{H}_L &= (\mathbf{X}_A - \mathbf{X}_B) = \text{const.}
\end{align*}
\]

We identify a nearly singular configuration for LAO binding protein (2laa) manifested by a vanishingly small singular value (highlighted). Tuning the threshold parameter allows more flexibility in the constraints and reveals how singularities affect rigidity.

Validation with Pebble Game

We compared our method to the combinatorial pebble game algorithm [5], which computes rigid bodies exactly from constraint counting for generic configurations.

Both methods yield the same set of rigidified and moveable links. While the pebble game only identifies the potential of motion, our nullspace matrix provides an explicit basis for coordinated motions along floppy modes leading to the indicated motion pattern. This results in an efficient procedure to probe conformational space.

Numerical Analysis of the Nullspace

A basis for the nullspace is numerically determined by identifying a basis for the nullspace of the constraint Jacobian matrix. We identify rigid clusters in the protein directly and exactly from analysis of the configuration manifold Q at the current configuration q, which coincides with the nullspace of the constraint Jacobian matrix. We distinguish two kinds of DoFs in N maps velocities of floppy modes u to admissible velocities of q.

Rigidified DoFs have zero velocity \(\iff \) Row in N is completely zero

Coordinated DoFs have velocity \(\iff \) Row in N has non-zero entries

We distinguish two kinds of DoFs in N:

- Rigidified DoFs have zero velocity
- Coordinated DoFs have velocity

Note that

- \(q \) comprises all torsional DoFs constrained in cycles,
- \(J \) is the 5m x n Jacobian matrix for m hydrogen bonds,
- partial derivatives are cross-products and calculated efficiently,
- the singular value decomposition (SVD) of \(J \) yields a nullspace basis \(N \)
- \(N \) maps velocities of floppy modes \(u \) to admissible velocities of \(q \)

Singular Configurations

Our geometric nullspace method correctly identifies rigidity in singular configurations, whereas the pebble game over-estimates rigidity in such configurations.

The example shows a configuration where two DoFs are collinear and form a hinge. Our nullspace method correctly identifies the depicted hinge motion, while the pebble game predicts complete rigidity.

Protein Evaluation

We use KINARI [6] to identify hydrogen bonds with a cut-off energy of -1 kcal/mol. With threshold parameters selected in the common margins, we observe identical rigid cluster decomposition between our nullspace method and KINARI.

<table>
<thead>
<tr>
<th>PDB</th>
<th># Atoms</th>
<th># H-Bonds</th>
<th>Nullspace Dimension</th>
<th># Clusters</th>
<th>Biggest Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>1hhp</td>
<td>1563</td>
<td>58</td>
<td>39</td>
<td>412</td>
<td>335</td>
</tr>
<tr>
<td>3mwe</td>
<td>2203</td>
<td>109</td>
<td>21</td>
<td>403</td>
<td>900</td>
</tr>
<tr>
<td>2lao</td>
<td>3608</td>
<td>188</td>
<td>68</td>
<td>429</td>
<td>215</td>
</tr>
</tbody>
</table>

*more relaxed numerical thresholds

Discussion

Explicit constraint counting treats rigidity as a combinatorial problem, independent of the underlying geometry. This results in a very fast algorithm, but yields correct results only for generic configurations. We observed in the previous examples that near-singularities can induce additional flexibility in the structure. Our geometric approach identifies rigidity from the tangent space of the constraint manifold. Singularities correspond to bifurcations in the tangent space, leading to increased instantaneous mobility and finite motions not subject to constraints. Our results equally apply to any constrained mechanical system and are not limited to proteins. However, complex protein structures pose an extraordinary challenge to such analyses and remain under-explored. We will address more specific effects of singularities on rigidity and flexibility in future work.

Acknowledgement

Support from the Bavaria California Technology Center under project number 7, 2014-1 is gratefully acknowledged.

References