Asynchronous variational Lie group integration for geometrically exact beam dynamics

F. Demoures¹, F. Gay-Balmaz², T. Leitz³, S. Leyendecker³, S. Ober-Blöbaum⁴, T.S. Ratiu¹

¹ EPFL Lausanne-Switzerland {francois.demoures, tudor.ratiu}@epfl.ch
² CNRS-Ecole Normale Supérieure gaybalma@lmd.ens.fr
³ University of Erlangen-Nuremberg {thomas.leitz, sigrid.leyendecker}@ltd.uni-erlangen.de
⁴ University of Paderborn sinaob@math.uni-paderborn.de

Abstract

For the elastodynamic simulation of a spatially discretized beam, asynchronous variational integrators (AVI) offer the possibility to use different time steps for every element [1]. They are symplectic and conserve discrete momentum maps and since the presented integrator for geometrically exact beam dynamics [2] is derived in the Lie group setting (SO(3) for the representation of rotational degrees of freedom), it intrinsically preserves the group structure without the need for constraints [3]. A decrease of computational cost is to be expected in situations, where the time steps have to be very low in certain parts of the beam but not everywhere, e.g. if some regions of the beam are moving faster than others. The implementation allows synchronous as well as asynchronous time stepping and shows very good energy behaviour, i.e. there is no drift of the total energy for conservative systems.

Keywords: geometrically exact beam, elastodynamics, variational integrators, Lie group integrator, multi-time-step, discrete mechanics, geometric integration

1 Introduction

Variational integrators are derived analogously to the equations of motion in continuous Lagrangian mechanics. Instead of applying the continuous variational principle and discretising the equations of motion, the discrete variational principle is used, which directly leads to the discrete Euler-Lagrangian equations used to integrate forward in time. Therefore, one advantage is a direct path from the theory of Lagrangian mechanics down to the discrete setting and the numerical computations. As a result of the discrete variational principle, the symplectic structure of the Euler-Lagrange equations is carried over to the discrete world. In consequence, the integrators are structure preserving, symplectic and a discrete Noether theorem can be proven as well as a realistic energy behaviour, i.e. no numerical dissipation for conservative systems, is achieved. Variational integrators and their structure preserving properties are developed and analysed by Marsden et al. [4]. Furthermore, variational integrators are developed for many different classes of systems involving classical conservative mechanical systems (for an overview see [5, 6]), forced and controlled systems [7, 8], constrained systems (holonomic [9, 10] and nonholonomic systems [11]), nonsmooth systems [12], stochastic systems [13], multiscale systems [14, 15], electric systems [16] and Lagrangian PDE systems [17]. In particular for Lagrangian PDE systems, asynchronous variational integrators are developed by Lew et. al. [1] which allow the use of varying time step sizes throughout different elements in space, e.g. for different beam elements for the simulation of flexible beams.

The development of Lie group methods [18] in variational integration theory is a recent research topic. Discrete Euler-Lagrange equations for dynamical systems defined on Lie groups and discrete Lagrangian reductions have been performed in e.g. [19], [20], [21] and further developed in [22]. Lie-group formulations are in particular appropriate to describe the orientation of rigid bodies or cross sections of flexible beams.

For the variational simulation of flexible beams, the formulation of the beam dynamics as Lagrangian system is required that involves a representation of the rotational degrees of freedom and their kinematics. One formulation particularly popular when the beam is part of a multibody system is based on a redundant configuration variable subject to constraints (see e.g. [23, 24]). Recently, local parametrization based on Lie group formulations are becoming more and more important in multibody dynamics, see e.g. [25, 26].

In this work, an asynchronous variational Lie group integrator described by Demoures [27] is presented and applied for the simulation for geometrically exact beams. In Section 2, a brief introduction to the theory of geometrically exact beam dynamics is given [2]. The spacetime discretization unique to AVIs and the principal functionality and implementation of
the AVI are explained in Section 3 and 4. As an example, the results of the simulation of a beam are shown in Section 5 where the discrete Noether theorem is verified for the special case of concurrency of all elements.

2 Beam dynamics

The reference configuration B of the beam is represented by the arc length parameter

$$s \in [0, L] \subset \mathbb{R}$$

where L is the length of the beam. Figure 1a shows the undeformed beam and the arc length parameter. The spacetime

(a) reference configuration of the beam

(b) deformed beam in ambient space

Figure 1: parametrization of the beam

$\mathcal{X} \ni X$ is defined as the direct product of time $\mathbb{R} \ni t$ and the reference configuration $B \ni s$.

$$X \in \mathcal{X} = \mathbb{R} \times B$$

$$X = (t, s) \in [0, T] \times [0, L]$$

The ambient space or space of allowed deformations \mathcal{M} of the beam is given by the Lie Group $SE(3)$

$$x \in \mathcal{M}$$

$$x = (\Lambda, r) \in SE(3)$$

where $\Lambda \in SO(3)$ and $r \in \mathbb{R}^3$ represent orientation and position of the crosssection at s (see Figure 1b). The relation between the inertial frame $\{e_1, e_2, e_3\}$ and the spatial frame $\{d_1(s), d_2(s), d_3(s)\}$ as a function of the arc length parameter s reads

$$d_I(s) = \Lambda(s) e_I, I = 1, 2, 3$$

$$\gamma = \frac{\partial x}{\partial s} \quad \text{spatial velocity}$$

$$\gamma' = \frac{\partial x}{\partial t} \quad \text{deformation gradient}$$

Figure 2: visualization of the deformation map $\varphi : \mathcal{X} \rightarrow \mathcal{M}$
The deformation map φ is a map from the space time X to the ambient space M describing the configuration of the beam at time t and arc length s.

$$\varphi : X \rightarrow M$$

$$\varphi : (t, s) \mapsto x = (\Lambda, r)$$

The deformation map can be visualized as the graph shown in Figure 2. The green line arises by holding a point in the reference configuration fixed and it represents the trajectory of a material point in time. The blue line is produced by holding a point in time fixed and it represents the configuration of the beam at time t.

Taking the partial derivative of φ with respect to time t gives the spatial velocity of a material point $\dot{\varphi}$ while the partial derivative of φ with respect to the arc length parameter s gives the deformation gradient φ'.

$$\dot{\varphi} = \frac{\partial \varphi}{\partial t}$$

$$\varphi' = \frac{\partial \varphi}{\partial s}$$

In order to define the Lagrangian density for beam dynamics, it is convenient to define the following convective variables

$$(\hat{\Omega}, \Gamma) : = (\Lambda^T \Lambda', \Lambda^T r')$$

$$(\hat{\omega}, \gamma) : = (\Lambda^T \dot{\Lambda}, \Lambda^T \dot{r})$$

where $\hat{\omega}$ and γ are material velocities and $\hat{\Omega}$ and Γ are the material strains. The hat map is the isomorphism $\hat{\cdot} : \mathbb{R}^3 \rightarrow \mathfrak{so}(3)$. The potential \tilde{V} and kinetic \tilde{T} energy densities can be expressed using these quantities

$$\tilde{V} (\varphi (t, s)) = \frac{1}{2} \left((\Gamma - e_3)^T C_1 (\Gamma - e_3) + \Omega^T C_2 \Omega \right)$$

$$\tilde{T} (\dot{\varphi} (t, s)) = \frac{1}{2} \left(M \| \gamma \|^2 + \omega^T J \omega \right)$$

$C_1 := \text{Diag} (GA, GA, EA)$

$C_2 := \text{Diag} (EI_1, EI_2, G (I_1 + I_2))$

A : cross section

E : Young modulus

I : principal area moment of inertia tensor

J : moment of inertia tensor

Note that E, G, I, J are densities (per unit length). Also note that the potential energy is only a function of the strains, which means that so far there are no other potentials like gravity and no external forces like actuation. The inclusion of external forces is generally possible using the Lagrange-d’Alembert principle.

The potential and kinetic energies are the respective integrals over the reference configuration

$$V (\varphi (t, \cdot)) = \int_0^L \tilde{V} (\hat{\Omega}, \Gamma) \, ds$$

$$T (\dot{\varphi} (t, \cdot)) = \int_0^L \tilde{T} (\hat{\omega}, \gamma) \, ds$$

and therefore the Lagrangian density \mathcal{L} and the Lagrangian \mathcal{L}' are

$$\mathcal{L} (\varphi (t, s), \dot{\varphi} (t, s)) = \tilde{T} - \tilde{V} = \frac{1}{2} \left(M \| \gamma \|^2 + \omega^T J \omega \right) - \frac{1}{2} \left((\Gamma - e_3)^T C_1 (\Gamma - e_3) + \Omega^T C_2 \Omega \right)$$

$$\mathcal{L}' (\varphi (t, \cdot), \dot{\varphi} (t, \cdot)) = T - V = \int_0^L \mathcal{L} \, ds$$

The action functional is defined as

$$S (\varphi) = \int_0^T \mathcal{L}' \, dt = \int_0^T \int_0^L \mathcal{L} \, ds \, dt$$

According to Hamilton’s principle, the action functional is stationary under variations, i.e. $\delta_\varphi S = 0$ with $\delta_\varphi (0, s) = \delta_\varphi (T, s) = 0$. This leads to the Euler-Lagrange equations

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}'}{\partial \dot{\varphi}} \right) - \frac{\partial \mathcal{L}'}{\partial \varphi} = 0$$
and specifically for the beam the Euler-Lagrange equations are
\[
J \ddot{\omega} + \omega \times J \dot{\omega} + n \times \Gamma - \omega \times m - m' = 0 \\
M \ddot{\gamma} + \omega \times M \dot{\gamma} - \Omega \times n - n' = 0
\]
where the local stresses \(m \) and \(n \) are defined as
\[
m = \frac{\partial \hat{V}}{\partial \Omega} = C_2 \Omega \\
n = \frac{\partial \hat{V}}{\partial \Gamma} = C_1 (\Gamma - e_3)
\]
By Noether’s theorem, if the action of a Lie group element \(g \in G \) on \(\varphi \) with the corresponding differential \(dg_\varphi \)
\[
g : \mathcal{M} \to \mathcal{M} \\
dg_\varphi : T_\varphi \mathcal{M} \to T_{g(\varphi)} \mathcal{M}
\]
leaves the Lagrangian invariant
\[
\mathcal{L}(\varphi, \dot{\varphi}) = \mathcal{L}(g(\varphi), dg_\varphi(\dot{\varphi}))
\]
the momentum map \(J_\mathcal{L} \) is preserved. With \(g = \text{Lie} (G) \) being the Lie algebra of \(G \) and \(\xi_M \in \mathfrak{g} \) the infinitesimal generator of the action of \(g \), the momentum map is defined as
\[
J_\mathcal{L} : T \mathcal{M} \to \mathfrak{g}^* \\
J_\mathcal{L}(\varphi, \dot{\varphi})(\xi) = \frac{\partial \mathcal{L}(\varphi)}{\partial \dot{\varphi}} \xi_M(\varphi)
\]
The action induced by the Lie group element \(g_\alpha = \exp(\alpha \xi) = (R, u) \in G_\alpha \subset SE(3) \) with \(\alpha \in \mathbb{R}, \xi \in \mathfrak{se}(3), R \in SO(3) \) and \(u \in \mathbb{R}^3 \) is acting as rotation and translation on the configuration.
\[
g_\alpha : (\Lambda, r) \mapsto (R\Lambda, Rr + u)
\]
For the free beam, i.e., a beam without gravity and no actuation, the Lagrangian is invariant with respect to the action of an element of \(G_\alpha \). This leads to the preservation of total inertial angular \(J_R \) and linear \(J_L \) momentum maps.
\[
J_\mathcal{L} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \frac{\partial g_\alpha(\varphi)}{\partial \alpha} \bigg|_{\alpha = 0} = \begin{pmatrix} J_R \\ J_L \end{pmatrix} = \int_0^L \begin{pmatrix} \Lambda J_\omega + r \times \Lambda (M\gamma) \\ \Lambda (M\gamma) \end{pmatrix} ds
\]

3 Spacetime discretization

The discretization of space is carried out by dividing the beam of length \(L \) into \(N_K \) elements denoted by \(K \) [27]. Each element has two nodes \(a \) and \(a + 1 \) and the element length in the reference configuration is \(L_K = s_{a+1} - s_a \). Using a different (but constant) time step, for each element \(K \), spacetime gets discretized in an asynchronous fashion. Note that if every element received the same step time, the result would be a synchronous variational integrator. This particular spacetime discretization gives rise to the interpretation of the grid as being comprised of spacetime elements \(E_K^i \), as shown in Figure 3, where \(t_a^i \) and \(t_{a+1}^i \) are the time nodes of the left and right spatial nodes and \(t_{a+1}^i \) are the time nodes of the element \(K \). Every spacetime element has at least four spatial nodes and there might be any number of nodes in between the first and the last node on either side depending on the time steps of the adjacent elements.

The discrete elemental spacetime \(\mathcal{E}_d \) is defined as the union of all spacetime elements while the discrete nodal spacetime \(\mathcal{X}_d \) is defined as the union of all nodes in spacetime.
\[
\mathcal{E}_d : = \bigcup E_K^i \\
\mathcal{X}_d : = \bigcup (t_a^i, s_a)
\]
The discrete element action \(L_K^j \) is an approximation of the integral of the Lagrangian density over the spacetime element \(E_K^j \) and the discrete action sum \(S_d \) is an approximation of the action functional
\[
L_K^j \approx \int_{t_a^i}^{t_{a+1}^i} \int_{s_a}^{s_{a+1}} \mathcal{L}(\varphi, \dot{\varphi}) ds dt \\
S_d = \sum_{E_K^j \in \mathcal{E}_d} L_K^j \approx S
\]
In order to derive a discrete approximation of the action functional, the configuration is spatially interpolated between the nodes at time t^j_K. For the position the linear interpolation
\[r^j_a(S) |_{K} := r^j_a + \frac{S}{\ell_K} \Delta r^j_a \] with $\Delta r^j_a = (r^j_{a+1} - r^j_a)$ and $S \in [0, \ell_K]$

and for the orientation the geodesic interpolation using the exponential map is used
\[\Lambda^j_a(S) |_{K} := \Lambda^j_a \exp \left(\frac{S}{\ell_K} \hat{\psi}^j_a \right) \] with $\exp(\hat{\psi}^j_a) = (\Lambda^j_a)_{\ell_K}$

where $\hat{\psi}^j_a \in \mathfrak{so}(3)$ such that
\[\Lambda^j_a(0) = \Lambda^j_a \] and $\Lambda^j_a(\ell_K) = \Lambda^j_{a+1}$

This leads to the interpolation of the strain measures $\hat{\Omega}^j_a$ and Γ^j_a
\[\hat{\Omega}^j_a(S) = \Lambda^j_a(S) \left(\Lambda^j_a(S)^T \right)^\prime = \frac{\hat{\psi}^j_a}{\ell_K} \] \[\Gamma^j_a(S) = \Lambda^j_a(S)^T \left(r^j_a(S) \right)^\prime = \Lambda^j_a(S)^T \frac{\Delta r^j_a}{\ell_K} \]

The inverse of the exponential map is needed to compute the strain measure
\[\hat{\Omega}^j_a = \hat{\Omega}^j_{a+1} = \frac{\exp^{-1}(K^j_a)}{\ell_K} \]

with $K^j_a = (\Lambda^j_a)^T \Lambda^j_{a+1}$ and is approximated by the Cayley map with its inverse
\[\hat{\psi}^j_a = \exp^{-1}(K^j_a) \approx \text{cay}^{-1}(K^j_a) = 2 \left(K^j_a - I \right) \left(K^j_a + I \right)^{-1} \]

Angular and linear velocity are approximated by the following difference quotients
\[\omega^i_a = (\Lambda^i_a)^T \dot{\Lambda}^i_a \approx \left(\Lambda^i_a \right)^T \left(\frac{\Lambda^{i+1}_a - \Lambda^i_a}{t^i_{a+1} - t^i_a} - \frac{\Lambda^{i+1}_a - \Lambda^i_a}{t^i_{a+1} - t^i_a} \right) \not\in \mathfrak{so}(3) \]
\[\gamma^i_a = (\Lambda^i_a)^T \dot{r}^i_a \approx \left(\Lambda^i_a \right)^T \left(\frac{r^{i+1}_a - r^i_a}{t^i_{a+1} - t^i_a} \right) \]

Note that the approximation of ω^i_a is not an element of the Lie algebra $\mathfrak{so}(3)$. Nevertheless, it is only used in the approximation of the kinetic energy and doesn’t hurt the group structure preserving property of the integrator meaning...
that the elements of the discrete ambient space $x_a^i \in SE(3)$ are computed using only group actions, thus eliminating the need for holonomic constraints.

The kinetic $\tilde{T}_d(f_a^i)$ and potential $\tilde{V}_d(h_a^j)$ energy densities are functions of the temporal and spatial increments respectively

$$f_a^i = (x_a^i)^{-1} x_a^{i+1} \in SE(3) \quad h_a^j = (x_a^j)^{-1} x_a^{j+1} \in SE(3)$$

The discrete element action for the beam reads

$$L^i_{K} = \sum_{t'_K \leq t < t_{K+1}^i} \frac{\ell_K}{2} (t_{K+1}^i - t_k) \tilde{T}_d(f_a^i) + \sum_{t'_K \leq t < t_{K+1}^i} \frac{\ell_K}{2} (t_{K+1}^i - t_k) \tilde{T}_d(f_{a+1}^i) - \ell_K(t_{K+1}^i - t_K^i) \tilde{V}_d(h_a^j).$$ \hspace{1cm} (1)

approximating the integral over the spacetime element E_{K}^j (see Figure 3 on the right).

Applying the discrete variational principle $\delta S_d = 0$ and making use of variations on $SO(3)$

$$\delta \Lambda = \Lambda \dot{\eta} \quad \text{and} \quad \delta \omega = \omega \times \eta + \dot{\eta} \quad \text{with} \quad \dot{\eta}, \dot{\omega} \in so(3)$$

the discrete Euler-Lagrange equations are obtained

$$\sum_{E_{K}^j \in E_d(X_a)} \frac{\partial L^i_{K}}{\partial x_a^i} = 0 \quad \text{for all} \quad X_a^i = (t_a^i, s_a) \quad \text{with} \quad s_a \in [0, L], 0 \leq t_a^i \leq T \hspace{1cm} (2)$$

where the sum runs over all elements in E_d containing the space time node X_a^i. The discrete Euler-Lagrange equations are solved for the temporal increments f_{a+1}^i and the discrete geometric reconstruction gives the new configurations

$$x_{a+1}^{i+1} = x_a^i f_a^i$$

In contrast to a synchronous integrator, the AVI needs to decide in which order the elements become active. In order to do this, a priority queue is maintained. Figure 4 shows the discretized spacetime for a beam with five elements on the left and the appropriate priority queue for the chosen time discretization on the right. In the main loop of the program, in which

$$f_a^i = f_a^i \left(\tilde{T}_d, \tilde{V}_d \right) \quad f_{a+1}^{i+1} = f_{a+1}^{i+1} \left(\tilde{T}_d, \tilde{V}_d \right)$$

Figure 4: Priority queue
The kinetic energy densities depend on the previous temporal increments as they are used to approximate the velocities

\[\tilde{T}_d = \tilde{T}_d (f_a^{-1}) \quad \tilde{T}'_d = \tilde{T}'_d (f_a'^{-1}) \]

The potential energy density at time \(t'_K \) depends on the previous spatial increments since they are used to approximate the strains. Here the special case of temporal concurrency of two adjacent elements has to be taken into account. This occurs Therefore the potential energy density acting on the left node \(a \) is

\[
\tilde{V}_{d,a} = \begin{cases}
\tilde{V}_{d,a} (h_a) & \text{if there is no concurrency} \\
\tilde{V}_{d,a} (h_{a-1}, h_a) & \text{if there is concurrency, i.e. the left element } K - 1 \text{ has the same time node as } K
\end{cases}
\]

For the right node \(a + 1 \) the potential energy density is

\[
\tilde{V}_{d,a+1} = \begin{cases}
\tilde{V}_{d,a+1} (h_a) & \text{if there is no concurrency} \\
\tilde{V}_{d,a+1} (h_a, h_{a+1}) & \text{if there is concurrency, i.e. the right element } K + 1 \text{ has the same time node as } K
\end{cases}
\]

The special case of temporal concurrency is illustrated in Figure 5. The dashed green lines on the left and the right of the element \(K \) represent possibly concurring elements. See also the Figures 3 and 4 where no concurrency occurs while in the example discussed below concurrency is desired and illustrated in Figure 7b. Considering this special case in the implementation generalizes the integrator allowing asynchronous as well as synchronous and partially synchronous integration.

The potential energy can be interpreted as accumulated energy in the time interval \([t_{K-1}^j, t_K^j] \) being released at time \(t_K^j \) altering the linear and angular momenta of the nodes [1].

![Flowchart explaining the algorithm](image-url)
5 Example

In order to test the AVI, a simple simulation has been done. A beam of length 2m with a cross section area of $0.01\text{m} \times 0.01\text{m}$ is spatially discretized into 10 elements with randomly varying element lengths $\ell_K \in [0.175, 2.025]\text{m}$. The time steps for the ten elements are set to

$$(3, 5, 6, 1, 4, 9, 8, 2, 7, 10) \cdot 2^{-15}\text{s}$$

having the least common multiple of $2520 \cdot 2^{-15}$ and as a result all elements concur, i.e. they have the identical time node, every 7381 time steps or every $7.6904296875 \cdot 10^{-2}$ seconds. Note that the time steps are chosen as multiples of 2^z with $z \in \mathbb{Z}$. This is done to ensure that adding up the time steps numerically leads exactly to the desired concurrency of all the elements. In the initial state at time $t = 0\text{s}$, the beam is twisted around the z-axis and the nodes have initial velocities in the x-direction of the corresponding material frame. The simulation parameters are shown in Figure 6. Simulation time is 5s and the total inertial linear and angular momenta are exactly preserved at concurrent time nodes which can be seen in Figures 8a and 8b. Figure 7a shows the kinetic, potential and total energy of the beam. Since it is a conservative system, there is no drift in the total energy.

![Figure 6: Simulation parameters](image)

![Figure 7: Evolution of kinetic, potential and total energy (7a) and the priority queue (7b) for the example](image)
Figure 8: Evolution of total inertial linear (8a) and angular (8b) momentum. Due to the discrete Noether theorem they are both exactly preserved.

6 Conclusions and outlook

In this work an asynchronous variational integrator for geometrically exact beam dynamics formulated on Lie groups and corresponding numerical results are presented. Simulations show very good energy behaviour, i.e. no numerical dissipation for conservative systems. For a free beam the exact preservation of angular and linear momentum is verified. This is due to the symplectic nature of the integrator, which is also responsible for the good energy behaviour.

In future works gravity and the actuation of the beam through forces and torques is to be integrated. In order to see an advantage in computing times, varying material and geometrical parameters throughout the beam can be taken into account. Using an AVI in this case prevents the stiffer regions from dictating small time steps for the whole beam.

References

