Notes on Lipschitz Estimates for the Stop and Play Operator in Plasticity

Holger Lang, Klaus Dressler, René Pinnau, Michael Speckert

1, 2, 4 Fraunhofer Institut für Techno- und Wirtschaftsmathematik, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
holger.lang@itwm.fraunhofer.de, klaus.dressler@itwm.fraunhofer.de, michael.speckert@itwm.fraunhofer.de

3 Technische Universität Kaiserslautern, Erwin Schrödinger Strasse, Geb. 48, 67663 Kaiserslautern, Germany
pinnau@mathematik.uni-kl.de

Abstract

We present a generalisation of existing Lipschitz estimates for the stop and play operator for an arbitrary convex and closed characteristic, which contains the origin, in a separable Hilbert space. We are especially concerned with the dependence of stop and play on different scalar products.

Keywords. Convex sets, Variational inequalities, Rate-independence, Hysteresis, Absolutely continuous functions, Elasticity, Plasticity.

MSC classification: 52A05, 74C05, 26A46

1 Introduction

The so-called stop and play operators are often used in the mathematical analysis of elastoplastic models or contact mechanics, wherever rate-independent hysteresis phenomena occur. The following notations follow Brokate and Krejčí, c.f. [1, 2, 6, 7].

For a given scalar product $\langle \cdot, \cdot \rangle$ on a separable Hilbert space X, a convex and closed set $Z \subseteq X$ such that $0 \in Z$, named the characteristic, and an element $s_0 \in Z$, named the initial memory, there exist a unique decomposition of the identity operator $I = S_{Z,\langle \cdot, \cdot \rangle} + P_{Z,\langle \cdot, \cdot \rangle}$ into operators

$$S_{Z,\langle \cdot, \cdot \rangle}, P_{Z,\langle \cdot, \cdot \rangle} : W^{1,q}([0,T],X) \times Z \to W^{1,q}([0,T],X), \quad 1 \leq q < \infty,$$

named

stop $s(t) = S_{Z,\langle \cdot, \cdot \rangle}(f,s_0)(t)$ and play $p(t) = P_{Z,\langle \cdot, \cdot \rangle}(f,s_0)(t)$

(for all $t \in [0,T]$), defined by the uniquely determined solutions of the evolution variational inequality

$$\begin{cases}
\langle \dot{p}(t), s(t) - \ast \rangle \geq 0 & \text{for all } \ast \in Z \quad \text{a.e. in } [0,T] \\
s(t) + p(t) = f(t) & \text{e. in } [0,T] \\
s(t) & \in Z \\
s(0) = s_0
\end{cases} \quad (1)$$

Here, $W^{1,q}([0,T],X) = \{ AC([0,T],X) : \dot{f} \in L^q([0,T]), X \}$ is the Sobolev space of X-valued, absolutely continuous functions with q-integrable derivative, see [7, Appendix].
The dependence of S and P on the geometry Z and the inputs s_0 and f has been subject of extensive study in the cited literature, whereas the dependence on the scalar product $\langle \cdot, \cdot \rangle$ is usually not considered. We want to fill this gap in these short notes with Proposition 3.1. But first by the following two examples, we want to give a short rough sketch, why our estimates are useful.

Example 1 (Linear kinematic hardening material). Proposition 3.1 directly translates into local parameter robustness results in elastoplasticity for linear kinematic hardening material, see [6, 7]. Just consider the stress $\sigma = \alpha + \beta$ (decomposed into backstress α and plastic stress $\beta \in Z$), the strain $\varepsilon = \varepsilon^{el} + \varepsilon^{pl}$ (decomposed into elastic ε^{el} and plastic strain ε^{pl}), Hooke’s law $\sigma = C \varepsilon^{el}$, the linear kinematic hardening law $\alpha = A \varepsilon^{pl}$, the normality rule $\langle \dot{\varepsilon}^{pl}, \beta - * \rangle \geq 0$ for all $* \in Z$, where Z is Mises or Tresca set, and identify $p = \alpha$ (play), $s = \beta$ (stop), $f = \sigma \in AC([0, T], X)$ (input), $s_0 = \beta_0 \in Z$ (initial memory). Then Proposition 3.1 yields similar local stability results as in [4, section 7.4] in a very simple, but concise language,

- **without** transforming the constitutive stress-strain law into its corresponding ‘primal problem’ (in the context of convex analysis), cf. [4, Chapter 7].
- **without** additional restrictive assumptions as for example the ‘safe load condition’ in [4, Section 8.2]. The reader should note that our proofs are completely elementary from a functional analytic point of view.

We find as a **direct** consequence of Proposition 3.1, that for two stress inputs σ_i, two initial memories $\beta_{0,i}$, two Hooke’s tensors $C_i : X \to X$ and two linear kinematic hardening tensors $A_i : X \to X$, $i \in \{1, 2\}$, the differences $\Delta = 1 - 2$ of the corresponding outputs $\|\Delta \sigma(t)\|$, $\|\Delta \beta(t)\|$, $\|\Delta \varepsilon(t)\|$, $\|\Delta \varepsilon^{el}(t)\|$ and $\|\Delta \varepsilon^{pl}(t)\|$ can be estimated by sums of

$$c_1 \| \Delta \beta_0 \|, \quad (c_2 \| \Delta A \| + c_3 \| \Delta C \|) \int_0^t (\| \dot{\sigma}_1 \| + \| \dot{\sigma}_2 \|) \, d\tau, \quad c_4 \int_0^t \| \Delta \dot{\varepsilon} \| \, d\tau,$$

and

$$(c_5 \| \Delta A \| + c_6 \| \Delta C \|) (\| \sigma_1(t) \| + \| \sigma_2(t) \|),$$

where the constants depend on $\| A_i \|$, $\| C_i \|$, $\| A_i^{-1} \|$, $\| C_i^{-1} \|$ (and Korn’s constant, if the material law is considered in connection with Newton’s balance equations). Here, X is allowed to be either $X = \mathbb{R}^{3 \times 3}_{sym} = \{ \tau \in \mathbb{R}^{3 \times 3} : \tau = \tau^T \}$ (if the stress-strain law is considered in isolation) or $X = L^2(\Omega, \mathbb{R}^{3 \times 3}_{sym})$ with a domain $\Omega \subset \mathbb{R}^3$ (if the full elastoplastic boundary value problem is considered). Details and extensions for linear kinematics plus isotropic hardening material are carried out in [9, Chapter 2] and [8].

Example 2 (Durability or High/Low Cycle Fatigue, HCF/LCF). In the engineering literature, there exist fast FE postprocessing algorithms that correct the elastic stress tensor $\sigma(t)$ (from the linear elastic boundary value problem) in order to get an approximation $\tilde{\sigma}(t)$ to the real elastoplastic stress $\sigma(t)$ (from the elastoplastic boundary value problem), see e.g. [5]. These algorithms enjoy a high popularity in the engineering community, as they provide a basis for better lifetime prediction for metallic bodies subjected to exterior loads. At first glance from an analytical point of view, they seem very dubious, since the constitutive material law, e.g. linear kinematic hardening, is entered with the elastic stress $\epsilon \sigma(t)$ and a fictive parameter ϵA instead of the elastoplastic stress $\sigma(t)$ and the linear kinematic hardening tensor A, see
Example 1. With the aid of Proposition 3.1 and a change of the underlying scalar product from $\langle \cdot, \cdot \rangle_R$ to $\langle \cdot, \cdot \rangle_A$ (the operator R already occurring in the work of Gröger [3]), it is now possible to justify this approach by giving upper estimates for the corrected stress of the form

$$
\|\tilde{\sigma}(t) - \sigma(t)\| \leq c\|R - A\| \int_0^t \|\dot{F}(\tau)\|d\tau
$$

in terms of the total variation of the applied exterior forces $F(t)$. This ensures a small error for the corrected stress $\tilde{\sigma}(t)$ for the scope of LCF, if A is chosen close to R. Details would go beyond the scope of these short notes, so the reader is referred to [8, 9].

Remark 1.1 In fact, the domain and range of stop and play can be chosen larger than $W^{1,1} = AC$. See Theorem 4.1 in [7] for functions of class $CBV = C \cap BV$, i.e. continuous functions of bounded variation, and section 4.2 in [7] for continuous functions. Note that the inclusions $W^{1,q}([0, T], X) \subset W^{1,1}([0, T], X) = AC([0, T], X) \subset CBV([0, T], X) \subset C([0, T], X)$ for $1 \leq q \leq \infty$ hold. Further, S and P are continuous with respect to the norm $\|f\|_{W^{1,q}} = |f(0)| + \|\tilde{f}\|_{L^q([0, T], X)}$, if $1 \leq q < \infty$, c.f. Theorem 4.2 and the remarks after Theorem 9.7 in [7].

2 The standard Lipschitz estimates for stop and play

We first have a look at the standard estimates for stop and play. From the defining variational inequality (1), difference quotients and passing to the limit to zero, one sees that $(\dot{p}(t), \dot{s}(t)) = 0$ a.e. in $[0, T]$, which implies Pythagoras relation, from which

$$
|\dot{p}(t)| \leq |\dot{f}(t)|, \quad |\dot{s}(t)| \leq |\dot{f}(t)| \quad a.e. \text{ in } [0, T]
$$

follow. Further, we have for two decompositions

$$
p_i = P(f_i, s_{0,i}), \quad s_i = S(f_i, s_{0,i}), \quad f_i \in AC([0, T], X), \quad s_{i,0} \in Z, \quad i = 1, 2
$$

and $\Delta s = \|s_0\| = s_1 - s_2$ the estimates

$$
|\Delta s(t)| \leq |\Delta s_0| + \int_0^t |\Delta \dot{f}(\tau)|d\tau, \quad |\Delta p(t)| \leq |\Delta s_0| + |\Delta f(0)| + 2 \int_0^t |\Delta \dot{f}(\tau)|d\tau,
$$

(3)

everywhere in the interval $[0, T]$. For a proof of (3) see [1, 2]. They are a special case for $A_1 = A_2 = A = I$ from Proposition 3.1 below. (3) implies the Lipschitz continuity of stop and play, considered as operators $S, P : (W^{1,1}([0, T], X) \times Z, \|\cdot\|_{W^{1,1}} + |\cdot|) \to (C([0, T], X), \|\cdot\|_\infty)$ with Lipschitz constants equal to 1 (for stop) and 2 (for play).

Remark 2.1 The proofs of the estimates (3) and our generalised versions in Proposition 3.1 do not require the interior of Z being non-empty. The assumption $0 \in \text{Int}(Z)$ of Propositions A.1, ..., A.3 in [2] can be weakened to $0 \in Z$. For this, see Theorem 1.9, Proposition 3.9 and Remark 3.10 in [6].

In the next section, the following inequality of Gronwall kind will be helpful:

Lemma 2.2 Let two functions $f \in L^1([0, T], \mathbb{R})$, $g \in C([0, T], \mathbb{R})$, satisfying $f \geq 0$ a.e. in the interval $[0, T]$ and $g(0) \geq 0$, be given. Then

$$
\frac{1}{2}g^2(t) \leq \frac{1}{2}g^2(0) + \int_0^t f(\tau)g(\tau)d\tau \quad \text{in } [0, T]
$$
implies
\[|g(t)| \leq |g(0)| + \int_0^t f(\tau) \, d\tau \quad \text{in } [0, T]. \]

3 Generalisations for different scalar products

We now generalise Brokate’s and Krejčí’s results in the sense that we allow different inputs, different initial memories and different scalar products. The main result of these notes is the following Proposition for the stop operator. Then, the estimates for play follow in analogy.

Proposition 3.1 (Stop operator) Let \(X \) be a separable Hilbert space with scalar product \(\langle \cdot, \cdot \rangle \) and norm \(|\cdot|^2 = \langle \cdot, \cdot \rangle \) and the operators \(A_1, A_2 \in \mathcal{L}(X, X) \) be symmetric and strongly positive, such that their associated scalar products

\[\langle x, y \rangle_{A_1} = \langle A_1^{-1} x, y \rangle, \quad \langle x, y \rangle_{A_2} = \langle A_2^{-1} x, y \rangle \quad (4) \]

induce equivalent norms

\[c_{A_1} |\cdot| \leq |\cdot|_{A_1} \leq C_{A_1} |\cdot|, \quad c_{A_2} |\cdot| \leq |\cdot|_{A_2} \leq C_{A_2} |\cdot|. \quad (5) \]

Let further a convex, closed characteristic \(\{0\} \subseteq Z \subseteq X \), two input functions and two initial memories \(f_1, f_2 \in W^{1,1}(\llbracket 0, T \rrbracket, X) \), \(s_{0,1}, s_{0,2} \in Z \) be given. For the stop and the play operator with respect to \(Z \) and the scalar products \(\langle \cdot, \cdot \rangle_{A_1} \) resp. \(\langle \cdot, \cdot \rangle_{A_2} \), denoted by

\[p_1 = P_{A_1}(f_1, s_{0,1}), \quad s_1 = S_{A_1}(f_1, s_{0,1}), \quad p_2 = P_{A_2}(f_2, s_{0,2}), \quad s_2 = S_{A_2}(f_2, s_{0,2}), \]

it holds that

\[|\Delta p(t)| \leq \frac{C_{A_1}}{c_{A_1}} |\Delta s_0| + \int_0^t \left(\frac{C_{A_1}}{c_{A_1}} |\Delta \bar{f}(\tau)| + \frac{1}{c_{A_1}^2} |\Delta A_1^{-1} \dot{p}_2(\tau)| \right) d\tau, \quad (6) \]

resp.

\[|\Delta s(t)| \leq \frac{C_{A_2}}{c_{A_2}} |\Delta s_0| + \int_0^t \left(\frac{C_{A_2}}{c_{A_2}} |\Delta \bar{f}(\tau)| + \frac{1}{c_{A_2}^2} |\Delta A_2^{-1} \dot{p}_1(\tau)| \right) d\tau. \quad (7) \]

Here \(\Delta \cdot = \cdot_1 - \cdot_2 \), especially \(\Delta A^{-1} = A_1^{-1} - A_2^{-1} \).

Proof: By the defining variational inequalities (1) w.r.t. the scalar products (4), we have

\[
\begin{cases}
\langle \dot{p}_i, s_i - \ast \rangle_{A_i} \geq 0 & \text{for all } \ast \in Z \quad \text{a.e. in } [0, T] \\
p_i + s_i = f_i & \text{e. in } [0, T] \\
s_i \in Z & \text{e. in } [0, T] \\
s_i(0) = s_{0,i}
\end{cases}
\quad (8)
\]

for \(i = 1, 2 \). Letting \(s_1 \) and \(s_2 \) chiastically into (8), we see that \(\langle \dot{p}_1, s_1 - s_2 \rangle_{A_1} = \langle A_1^{-1} \dot{p}_1, s_1 - s_2 \rangle \geq 0, \langle \dot{p}_2, s_2 - s_1 \rangle_{A_2} = \langle A_2^{-1} \dot{p}_2, s_2 - s_1 \rangle \geq 0 \), yielding

\[\langle A_1^{-1} \dot{p}_1 - A_2^{-1} \dot{p}_2, \Delta s \rangle \geq 0. \quad (9) \]

Adding a zero \(0 = -A_1^{-1} \dot{p}_2 + A_1^{-1} \dot{p}_2 \) in the left side of (9) and using the centered relations in (8), we get

\[\frac{1}{2} \frac{d}{dt} |\Delta s|_{A_i}^2 = \langle A_1^{-1} \Delta s, \Delta s \rangle \leq \langle A_1^{-1} \Delta \bar{f} + \Delta A_1^{-1} \dot{p}_2, \Delta s \rangle. \quad (10) \]
Integrating (10), we arrive at
\[
\frac{1}{2} |\Delta s(t)|^2_{A_1} - \frac{1}{2} |\Delta s(0)|^2_{A_1} \leq \int_0^t \left(\langle \Delta \hat{f}, \Delta s \rangle_{A_1} + \langle \Delta A^{-1} \hat{p}_2, \Delta s \rangle \right) \, d\tau
\leq \int_0^t \left(|\Delta \hat{f}|_{A_1} |\Delta s|_{A_1} + |\Delta A^{-1} \hat{p}_2| |\Delta s| \right) \, d\tau
\leq \int_0^t \left(C_{A_1} |\Delta \hat{f}| + \frac{1}{c_{A_1}} |\Delta A^{-1} \hat{p}_2| \right) |\Delta s|_{A_1} \, d\tau,
\]
due to (5). Therefore, lemma 2.2 yields
\[
|\Delta s(t)|_{A_1} \leq |\Delta s(0)|_{A_1} + \int_0^t \left(C_{A_1} |\Delta \hat{f}| + \frac{1}{c_{A_1}} |\Delta A^{-1} \hat{p}_2| \right) \, d\tau.
\]
With (5) we arrive at
\[
c_{A_1} |\Delta s(t)| \leq C_{A_1} |\Delta s(0)| + \int_0^t \left(C_{A_1} |\Delta \hat{f}| + \frac{1}{c_{A_1}} |\Delta A^{-1} \hat{p}_2| \right) \, d\tau,
\]
which finally gives (6). The same procedure for \(p_1\) instead of \(p_2\), \(\langle \cdot, \cdot \rangle_{A_2}\) instead of \(\langle \cdot, \cdot \rangle_{A_1}\), \(\langle \cdot, \cdot \rangle_{A_1}\) instead of \(\langle \cdot, \cdot \rangle_{A_2}\) together with (5) and (4) yields assertion (7).

We directly have the following consequences. They reader should note that analogous estimates hold, where the roles of 1 and 2 are swapped.

Corollary 3.2 (Special cases) Let the assumptions of Proposition 3.1 hold.

(a) **Same inputs, different scalar products.** If \(f_1 = f_2\), then it holds that \(\Delta s(t) = -\Delta p(t)\) and
\[
|\Delta p(t)| = |\Delta s(t)| \leq \frac{C_{A_1}}{c_{A_1}} |\Delta s_0| + \frac{1}{c_{A_1}^2} \int_0^t |\Delta A^{-1} \hat{p}_2(\tau)| \, d\tau.
\]

(b) **Same scalar products, different inputs.** If \(A_1 = A_2 = A\), which allows \(c_{A_1} = c_{A_2} = c_A\) and \(C_{A_1} = C_{A_2} = C_A\), then it holds that
\[
|\Delta s(t)| \leq \frac{C_A}{c_A} \left(|\Delta s_0| + \int_0^t |\Delta \hat{f}(\tau)| \, d\tau \right).
\]

(c) **Original scalar product each, different inputs.** If \(A_1 = A_2 = A = I\), which allows \(c_{A_1} = c_{A_2} = 1 = C_{A_1} = C_{A_2}\), then we receive nothing else but (3).

All estimates are valid in the interval \([0, T]\).

Remark 3.3 In the special case (c) of Corollary 3.2, it is easily seen, that it holds
\[
|\Delta p(t)|^2 \leq |\Delta p(0)|^2 + 2 \|\Delta f\|_{\infty,[0,t]} \int_0^t |\Delta \hat{p}(\tau)| \, d\tau.
\]
This strengthens estimate (4.4) in [7], which is
\[
|\Delta p(t)|^2 \leq |\Delta p(0)|^2 + 2 \|\Delta f\|_{\infty,[0,t]} \left(\int_0^t |\hat{p}_1(\tau)| \, d\tau + \int_0^t |\hat{p}_2(\tau)| \, d\tau \right).
\]
Corollary 3.4 Let the assumptions of Proposition 3.1 hold. Then for each \(t \in [0, T] \), it holds that

\[
|\Delta s(t)| \leq \frac{C_{A_1}}{c_{A_1}} \left(|\Delta s_0| + \int_0^t |\Delta \dot{f}(\tau)| d\tau \right) + \frac{C_{A_2}}{c_{A_1}^2 c_{A_2}} \int_0^t |\dot{f}_2(\tau)| d\tau
\]

and

\[
|\Delta p(t)| \leq |\Delta f(t)| + \frac{C_{A_1}}{c_{A_1}} \left(|\Delta s_0| + \int_0^t |\Delta \dot{f}| d\tau \right) + \frac{C_{A_2}}{c_{A_1}^2 c_{A_2}} \int_0^t |\dot{f}_2| d\tau.
\]

Proof: For the derivation of (11), note that we have

\[
|\Delta A^{-1} \dot{p}_2| \leq \frac{1}{c_{A_2}} |\Delta A^{-1}| |\dot{p}_2|_{A_2} \leq \frac{1}{c_{A_2}} |\Delta A^{-1}| |\dot{f}_2|_{A_2} \leq \frac{C_{A_2}}{c_{A_2}} |\Delta A^{-1}| |\dot{f}_2|.
\]

Further, we have \(\Delta s(t) = \Delta f(t) - \Delta p(t) \), which implies \(|\Delta s(t)| \geq |\Delta p(t)| - |\Delta f(t)| \geq |\Delta p(t)| - |\Delta f(t)| \). The rest follows from (11). \(\blacksquare \)

Acknowledgments. Thanks to the Deutsche Forschungsgemeinschaft, the Graduiertenkolleg Mathematik und Praxis (TU Kaiserslautern) for the financial support, the Fraunhofer ITWM for technical support, and Professor Martin Brokate (TU München) for scientific support.

References

