Various multibody dynamic models for the description of plane Kirchhoff rods

Holger Lang#, Hannah Laube#, Sigrid Leyendecker#

Chair of Applied Dynamics
University of Erlangen-Nuremberg
Haberstrasse 1, 91058 Erlangen, Germany
[holger.lang, hannah.laube, sigrid.leyendecker]@fau.de

ABSTRACT

Three modeling concepts from multibody dynamics (absolute redundant coordinates, minimal relative coordinates and mixed coordinates) are applied to a geometrically exact discrete viscoelastic Kirchhoff rod model from continuum mechanics. We compare the numerical effort and accuracy, using BDF time integration schemes, established in multibody dynamics.

Keywords: Multibody formalism, flexible multibody dynamics, BDF time integration, geometrically exact viscoelastic Kirchhoff rods, absolute & relative coordinates.

1 INTRODUCTION

The plane Kirchhoff rod model is well known in continuum mechanics for the dynamic simulation of slender structures. It is a geometrically exact generalisation of the linear Euler-Bernoulli beam that takes into account extensional and bending deformations [4]. In contrast to a Reissner rod (i.e. a plane Cosserat rod [9]), the plane and rigid cross sections always stay perpendicular to the centerline of mass centroids. Therefore, it does not incorporate transverse shear strains and is well suited for very slim structures. Viscoelasticity is taken into account by the use of Kelvin-Voigt material.

We consider a Finite Element discretisation that is based on the discrete Kirchhoff beam kinematics displayed in Figure 1. It is a two-dimensional plane restriction of the one proposed in [4, 5] for three-dimensional Kirchhoff and Cosserat rods on a staggered grid.

The proper choice of coordinates plays a crucial role concerning accuracy and numerical complexity during time integration. Here, we compare three approaches, which are well known in multibody dynamics simulations, and apply them to the proposed FE model. In what follows, \(N \) denotes the number of rod elements.

- The first approach is to use redundant absolute coordinates \(p \in \mathbb{R}^{4N} \) and to enforce shear rigidity via holonomic constraints. Index reduction is applied.

- The second is to use relative (and minimal) joint coordinates \(q \in \mathbb{R}^{2N} \). In the context of continuum mechanics, these magnitudes correspond to the extensional strains and the bending curvatures. This means that strain-like variables are used as the primary unknowns instead of the positions or displacements.

- The third approach is to use \(q \in \mathbb{R}^{2N} \) as the primary unknowns, but – at the same time – use both \(q \) and \(p \) within the dynamic right hand side function in order to solve the dynamic balance in every time step with linear complexity. This formulation constitutes a simple form of an \(\mathcal{O}(N) \)-multibody formalism.

The second and third version are not standard in continuum mechanics. The main intention to use these is that the time stepping characteristic should be significantly improved in comparison to the first approach. We compare the three approaches concerning accuracy and numerical effort,
focussing on the numerical linear algebra involved. Time integration is performed with a standard BDF method in MATLAB [10].

Nomenclature. Throughout the paper, for a complex number $z = u + iv$, where $u, v \in \mathbb{R}$ and i denotes the imaginary unit, satisfying $i^2 = -1$, we identify

$$z = u + iv \simeq \begin{bmatrix} u \\ v \end{bmatrix}, \quad \bar{z} = u - iv \simeq \begin{bmatrix} u \\ -v \end{bmatrix} \quad \text{and} \quad iz = iv - u \simeq \begin{bmatrix} -v \\ u \end{bmatrix}$$

with their vector counterparts in \mathbb{R}^2. Therefore, they are written in bold letters. Further, for two vectors $x, y \in \mathbb{R}^2$, $(x, y) = x^\top y$ denotes the Euclidean scalar product of x and y. Likewise, $\|x\| = \sqrt{(x, x)} = \sqrt{x^\top x}$ is the Euclidean norm of $x \in \mathbb{R}^2$. For a regular matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^n$ we let $A \backslash x = A^{-1}x$ denote the left-division of x by A in order to emphasise the fact that the inverse A^{-1} is never numerically computed. In fact, we always use Gaussian LU decomposition $A = LU$ in combination with forward and backward substitution, i.e. $A \backslash x = U \backslash (L \backslash x)$.

2 CONTINUUM MODEL

The kinematics of a (plane) Reissner rod is completely determined by its centerline

$$\text{centerline} : \mathcal{C} : (s, t) \mapsto \mathbf{x}(s, t)$$

and its unit complex number field $\mathbf{z} : [0, L] \times \mathbb{R} \to \mathbb{S}^1 = \{z \in \mathbb{C} : |z|^2 = 1\}$ denotes the complex unit circle, s denotes the arclength parameter in the straight, undeformed configuration, t is the time. The basic deformation modes of a Reissner rod are extension (i.e. axial dilation), bending and transverse shearing. See [9].

For a plane Kirchhoff rod, there is the additional Euler-Bernoulli restriction $i\mathbf{z}, \partial \mathbf{x} / \partial s = 0$, which means that the cross section directors $i\mathbf{z}$ are always orthogonal to the centerline tangents $\partial \mathbf{x} / \partial s$ during deformation [4]. Equivalently, the cross section normals \mathbf{z} equal the unit tangents $\partial^2 \mathbf{x} / \partial s^2$ of the centerline. The cross sections are assumed to be plane and rigid. The basic deformation modes of a plane Kirchhoff rod are extension and bending.

![Figure 1. Plane Kirchhoff beam kinematics. The directors \mathbf{z}_n are parallel to the discrete centerline tangents $\mathbf{x}_n - \mathbf{x}_{n-1}$. The directors $i\mathbf{z}_n$ indicate the orientation of the cross section, perpendicular to the centerline tangents. The position \mathbf{x}_0 and orientation \mathbf{z}_0 at the left are prescribed as boundary values.](image)

The internal elastic energy for a plane Kirchhoff rod is given by

$$\psi = \frac{1}{2} \int_0^L EA \left(\left\| \frac{\partial \mathbf{x}}{\partial s} \right\| - 1 \right)^2 ds + \frac{1}{2} \int_0^L EI |\partial \mathbf{z} / \partial s|^2 ds,$$

see [4, 5]. Here, $(EA)(s)$ denotes the extensional (or axial) stiffness with Young’s modulus $E(s)$ and the cross section area $A(s)$, $(EI)(s)$ is the bending stiffness with the geometric moment of inertia $I(s)$. $\|\partial \mathbf{x} / \partial s\| - 1$ is the extensional strain, $K = \mathbf{z} \partial \mathbf{z} / \partial s$ is the bending curvature.
It is assumed that the viscous power is proportional to the strain and curvature rates, which corresponds to the internal dissipative potential

\[\mathcal{D} = \frac{1}{2} \int_0^L \eta_E A \left(\frac{\partial}{\partial t} \left\| \frac{\partial \mathbf{x}}{\partial s} \right\| \right)^2 ds + \frac{1}{2} \int_0^L \eta_E I \left(\frac{\partial}{\partial t} \Im \left(\frac{\partial \zeta}{\partial t} \right) \right)^2 ds. \]

(2)

It was shown in [6] that (1) in combination with (2) corresponds to Kelvin-Voigt viscoelastic material with the extensional viscosity \(\eta_E(s) \).

The internal kinetic energy is given by

\[\mathcal{F} = \frac{1}{2} \int_0^L \rho A \left\| \frac{\partial \mathbf{x}}{\partial t} \right\|^2 ds + \frac{1}{2} \int_0^L \rho I \Im \left(\frac{\partial \zeta}{\partial t} \right)^2 ds, \]

(3)

with the mass density \(\rho(s) \). Note that \(\| \partial \mathbf{x} / \partial t \| \) is the centroid velocity, \(\Omega = \Im (\bar{\zeta} \partial \zeta / \partial t) \) the scalar angular velocity of the cross section. The derivation of the complex expressions for \(K \) and \(\Omega \) can be carried out in an analogous way as for their quaternionic counterpart, see [4, 5].

Remark Let \(SO(2) = \{ \mathbf{R} \in \mathbb{R}^{2 \times 2} : \mathbf{R}^\top \mathbf{R} = \mathbf{E}, \det \mathbf{R} = 1 \} \) denote the manifold of plane rotations. Then, due to the diffeomorphic, structure-preserving Euler-Gauss-mapping \(\mathcal{S}^1 \ni \zeta \mapsto \mathbf{R}(\zeta) = [\zeta \mid \bar{\zeta}] \in SO(2) \), the unit circle \(\mathcal{S}^1 \), equipped with its complex structure, is isomorphic to \(SO(2) \), considered both as manifolds and groups. We use complex numbers to enable the extension to a quaternionic formulation for Kirchhoff beams in 3D space later. □

3 DISCRETISATION IN ABSOLUTE COORDINATES

We propose the following discretisation scheme on a staggered grid [5]. The arclength parameter interval \([0, L]\) is discretised into \(N \) segments with nodes

\[0 = s_0 < s_1 < \ldots < s_{N-1} < s_N = L. \]

The segment midpoints are denoted by \(\sigma_n = \frac{1}{2} (s_{n-1} + s_n) \). We let \(\Delta s_n = s_n - s_{n-1} \) denote the length of the straight segment \([s_{n-1}, s_n] \) and \(\delta s_0 = \frac{1}{2} \Delta s_1, \delta s_n = \sigma_n - \sigma_{n-1}, \delta s_N = \frac{1}{2} \Delta s_N \) denote the length of the buckled segment \([\sigma_{n-1}, \sigma_n] \). We restrict ourselves to an autonomous system with fully clamped boundary on the left and a free boundary on the right. This makes the notational exposition as simple as possible. See Figure 1 for the discrete kinematics.

The first approach uses redundant absolute coordinates \(\mathbf{p} = (\mathbf{z}_1, \mathbf{x}_1, \ldots, \mathbf{z}_N, \mathbf{x}_N) \in \mathbb{R}^{4N} \), where the \(\mathbf{x}_n(t) \approx \mathbf{x}(s_n, t) \in \mathbb{R}^2 \) are approximations of the absolute translations (i.e. the cross section centroids) on the nodes and \(\mathbf{z}_n \approx \mathbf{z}(\sigma_n, t) \in \mathcal{S}^1 \) are approximations of the absolute rotations (i.e. the cross section orientations) on the segment midpoints.

We introduce the discrete curvature \(w_n \) (belonging to the \(n \)-th node) resp. the discrete extensional strain \(\xi_n \) (belonging to the \(n \)-th segment midpoint) by

\[w_n = \Im (\bar{\mathbf{z}}_{n-1} \mathbf{z}_n) \quad \text{resp.} \quad \xi_n = \| \mathbf{x}_n - \mathbf{x}_{n-1} \| \quad \text{for} \quad n = 1, \ldots, N. \]

(4)

We let \(\mathbf{z} = (\mathbf{z}_1, \ldots, \mathbf{z}_N) \in \mathbb{R}^N \) and \(\mathbf{x} = (\mathbf{x}_1, \ldots, \mathbf{x}_N) \in \mathbb{R}^N \). The internal elastic energy \(\mathcal{V} \) in (1) is discretised via the midpoint and trapezoidal rule,

\[\mathcal{V} \approx V(\mathbf{p}) = \frac{1}{2} \sum_{n=1}^N \left(\frac{EA}{\Delta s_n} \right) (\| \mathbf{x}_n - \mathbf{x}_{n-1} \| - \Delta s_n)^2 + \frac{1}{2} \sum_{n=0}^N \left(\frac{EI}{\delta s_n} \right) \Im (\bar{\mathbf{z}}_{n-1} \mathbf{z}_n)^2 \]

\[= \frac{1}{2} \sum_{n=1}^N \left(\frac{EA}{\Delta s_n} \right) (\xi_n(\mathbf{x}) - \Delta s_n)^2 + \frac{1}{2} \sum_{n=0}^N \left(\frac{EI}{\delta s_n} \right) w_n(\mathbf{z})^2. \]

(5)

(\text{Note that as the right end at } s = L \text{ is supposed to be free -- the bending curvature and the internal bending moment vanish identically at } s = L. \text{) Likewise for the internal dissipative potential } \mathcal{D} \text{ in (2),}

\[\mathcal{D} \approx D(\mathbf{p}, \dot{\mathbf{p}}) = \frac{1}{2} \sum_{n=1}^N \left(\eta_E A \right) \xi_n(\mathbf{x}, \dot{\mathbf{x}})^2 + \frac{1}{2} \sum_{n=0}^N \left(\eta_E I \right) w_n(\mathbf{z}, \dot{\mathbf{z}})^2. \]

(6)
For the internal kinetic energy \mathcal{T} in (3), we let

$$\mathcal{T} \approx T(p,\dot{p}) = \frac{1}{2} \sum_{n=0}^{N} \left(\frac{\rho A}{\Delta s} \right) \| \dot{z}_n \|^2 + \frac{1}{2} \sum_{n=1}^{N} \left(\frac{\rho f}{\Delta s} \right) \| \dot{z}_n \|^2. \quad (7)$$

The unity condition for z_n and the shear rigidity, i.e., the orthogonality of the cross section w.r.t. the centerline, lead to internal holonomic constraints of the form $0 = g(p) = (g_1, \ldots, g_N) \in \mathbb{R}^{2N}$, where

$$g_n(x_{n-1}, z_n, x_n) = \left[\begin{array}{c} \| z_n \|^2 - 1 \\ (i z_n, x_n - x_{n-1}) \end{array} \right] \quad \text{for } n = 1, \ldots, N. \quad (8)$$

Applying the Lagrange-d’Alembert principle, we arrive at the constrained Euler-Lagrange equations of motion

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{p}} \right) + \frac{\partial V}{\partial p} + \frac{\partial D}{\partial \dot{p}} + G^\top \lambda = 0, \quad g = 0$$

with the d’Alembert constraint forces $-G(p)^\top \lambda$, where $G(p) = \nabla g(p) \in \mathbb{R}^{2N \times 4N}$ is the Jacobian of $g(p)$ and $\lambda \in \mathbb{R}^{2N}$ are Lagrange multipliers, which are measuring the magnitude of the constraint forces.

The first constraint force is somewhat artificial due to the parametrisation of rotations by complex numbers. It is necessary to keep z_n on its spherical orbit. It is not hard to see that the second one represents the transverse shear force. (Note that here – in contrast to the shear flexible Reissner rod – the transverse shear forces are not of constitutive, but of reactive kind.) Then, the standard index 1 version of the equations of motion takes the form

$$\begin{bmatrix} \dot{p} \\ \dot{v}_p \\ \dot{\lambda} \end{bmatrix} = \begin{bmatrix} M(p) & G(p)^\top \\ 0 \end{bmatrix} \begin{bmatrix} f(p,v_p) \\ -G(p,v_p) \end{bmatrix} \quad (9)$$

with the state dependent mass $M(v_p) = \partial^2 T(p,v_p)/\partial v_p^2 \in \mathbb{R}^{4N \times 4N}$, being the Hessian of the quadratic kinetic energy, and the generalised force function

$$f(p,v_p) = \dot{M}(p,v_p)v_p - \frac{\partial V}{\partial p}(p) - \frac{\partial D}{\partial v_p}(p,v_p), \quad (10)$$

which is of dimension $4N$, incorporating the internal forces and momenta. Due to the parametrisation of rotations by complex numbers, f is free of trigonometric expressions and therefore fast to evaluate. (Further external actuating forces or momenta might simply be added.) System (9), composed with the projection $(\dot{p}, \dot{v}_p, \dot{\lambda}) \mapsto (\dot{p}, \dot{v}_p)$ yields a first order ODE system

$$\dot{u} = F_A(u) \quad \text{for the unknowns } u = \begin{bmatrix} p \\ v_p \end{bmatrix} \quad (11)$$

of dimension $8N$. The index ‘A’ stands for ‘absolute coordinates’. The structure of the $6N \times 6N$ system matrix in (9) is block-banded, see Figure 2. After rearranging the unknowns according to the chain topology of the discrete beam model, it becomes banded with a bandwidth 5, see Figure 2. We recall the fact from numerical linear algebra, that the numerical effort – measured in the total number of multiplikations and divisions – to solve a linear system of dimension n with bandwidth b is of order $O(b^2 n)$ for large n, see [3]. Therefore, solving the linear system of equations in (9) in each time step grows with complexity $5^2 \cdot 6N = 150N$.

Remark The proposed discretisation scheme is of second order in space, if the discretisation is chosen equidistant [4]. For a thorough discussion, why finite quotients for w_n in (4) constitute a reasonable choice to discretise curvature, we refer to [5] for the quaternionic case in 3D. □
4 STRAIN COORDINATES

The second approach uses ‘strain coordinates’ \(q = (w_1, \xi_1, \ldots, w_N, \xi_N) \in \mathbb{R}^{2N} \), where the discrete bending curvatures \(w_n \) resp. discrete extensional strains \(\xi_n \) from (4) represent the relative rotations resp. relative translations. In the nomenclature of multibody dynamics, they are usually called minimal ‘joint’ (or ‘relative’) coordinates.

We write \(q = \psi(p) \) to denote the forward transformation (4), mapping the absolute onto the relative strain coordinates. (This transformation is not necessarily of recursive kind.) Its inverse, the backward transformation \(p = \phi(q) \), is recursively given by

\[
\begin{align*}
 z_n &= \left(\sqrt{1 - w_n^2 + iw_n} \right) z_{n-1} \quad \text{resp.} \quad x_n = x_{n-1} + \xi_n z_n \quad \text{for} \quad n = 1, \ldots, N.
\end{align*}
\]

That way, the holonomic constraints (8) are clearly satisfied. System (9) is then transformed to the analytically equivalent form

\[
\begin{align*}
 \dot{q} &= v_q, \\
 M(q) v_q &= \Phi(q) \left\{ f(p, v_p) - M(p) \Phi(q) v_q \right\} \bigg|_{p = \phi(q), v_p = \phi(q) v_q},
\end{align*}
\]

with the Jacobian \(\Phi(q) = \nabla \phi(q) \), the velocity transformation \(p = \Phi(q) q \) and the \(2N \times 2N \) minimal mass matrix

\[
M(q) = \Phi(q)^\top M(p) \Phi(q) \bigg|_{p = \phi(q)}.
\]

It is depicted in Figure 3. The constraint on velocity level \(0 = G(p) \dot{p} = G(\phi(q)) \Phi(q) \dot{q} \) and the independence of the coordinates \(q \) imply that the columns of \(\Phi(q) \) span the null space (or kernel) of \(G(\phi(q)) \). Especially, \(G(\phi(q)) \Phi(q) \equiv 0 \), which is used to eliminate the constraint forces \(G(p)^\top \lambda \). Due to the recursive structure of (12), the Jacobian \(\Phi(q) \) has a triangular shape as displayed in Figure 3.

System (13) with the minimal mass (14) yields the first order ODE system

\[
A_S(u) \dot{u} = F_S(u), \quad \text{where} \quad A(u) = \begin{bmatrix} E & 0 \\ 0 & M(q) \end{bmatrix} \quad \text{for the unknowns} \quad u = \begin{bmatrix} q \\ v_q \end{bmatrix}
\]
of dimension $4N$. We use the index ‘S’ for ‘strain coordinates’. By the use of BDF multistep methods, it is not necessary to solve (13) for \dot{v}_q in each time step. However, the effort in linear algebra grows like $O(N^2)$, since the minimal mass $M(q)$ is fully populated. See Figure 3, Table 2 and [1, 3].

Remark Alternatively to the expression in (4), the extensional strains ξ_n might be written in the form

$$\xi_n = \|x_n - x_{n-1}\| = \|z_n\| \|x_n - x_{n-1}\| \cos \angle(z_n, x_n - x_{n-1}) = \left\langle z_n, x_n - x_{n-1} \right\rangle,$$

(16)

since $\|z_n\| = 1$ and $\angle(z_n, x_n - x_{n-1}) = 0$ because of the constraints (8). Note that the director z_n is parallel to the discrete centerline tangent $x_n - x_{n-1}$. Using (16) instead of (4), the dynamic right-hand-side generalised force function f in (10) is free of any algebraic (e.g. square root) and any trigonometric function.

5 MIXED COORDINATES

The third approach is formulated in terms of mixed coordinates, as it is called in [1]. Adding the equation $\ddot{q} = 0 \in \mathbb{R}^{2N}$ and augmenting system (9) by the dummy Lagrange multiplier $\eta = 0 \in \mathbb{R}^{2N}$, the index 1 system

$$\begin{cases}
\dot{p} = v_p \\
\dot{q} = v_q \\
\dot{v}_p = \begin{bmatrix} M(p) & 0 & G(p)^\top & -\Psi(p)^\top \\
0 & 0 & 0 & E \\
G(p) & 0 & 0 & 0 \\
-\Psi(p) & E & 0 & 0 \end{bmatrix} \begin{bmatrix} f(p,v_p) \\
0 \\
-\dot{G}(p,v_p)v_p \\
\Psi(p,v_p)v_p \end{bmatrix} \\
\eta = \varphi(q,v_q)
\end{cases}$$

(17)

with the Jacobian $\Psi(p) = \nabla \psi(p)$ is obtained. It is analytically equivalent to (9). System (17), composed with the projection mapping $(p,q,v_p,v_q,\lambda,\eta) \mapsto (q,v_q)$ yields the first order ODE system

$$\dot{u} = F_M(u) \quad \text{for the unknowns} \quad u = \begin{bmatrix} q \\
v_q \end{bmatrix}$$

(18)

of minimum dimension $4N$. The index ‘M’ stands for ‘mixed coordinates’. Clearly, from the analytical viewpoint, $F_S \equiv F_M$.

The idea behind the ‘mixed’ coordinate formulation is the sparsity of the system matrix in (17). Solving the linear system of equations in (17) in each time step grows with complexity $16^2 \cdot 10N = 2560N$, cf. [3], as the structure is block-banded or banded with bandwidth 16, see Figure 4. The
bandwidth is much larger than the one in (9), but we point out that Gaussian elimination takes place not outside the so-called ‘hull’ [8]. Therefore, the estimate $2560N$ is rather pessimistic. Alternatively, the linear system in (17) might be solved iteratively as a sequence of N ‘small’ linear systems [1].

Remark Solving the index 1 system (9) numerically, there is a linear drift-off in the velocity variables v_p, yielding a quadratic drift of the position variables p from the configuration manifold. As the coordinates q are minimal, there is no drift-off phenomenon, when using formulation (13) or (17). □

6 RESULTS, NUMERICAL STATISTICS AND TASK

The discussion of pros and cons for each of the formulations (9, 11), (13, 15) and (17, 18) with respect to numerical effort (e.g. function calls and time stepsizes) and accuracy is part of this section.

As an example, we consider the dynamic scenario depicted in Figure 5. It is a flexible Kirchhoff pendulum rod, made of rubber-like material, fully clamped at the left end and dynamically swinging under its own gravity load. The parameters used can be found in Table 1.

<table>
<thead>
<tr>
<th>L</th>
<th>1.00m</th>
<th>r</th>
<th>1.00 · 10^{-2}m</th>
<th>A</th>
<th>3.14 · 10^{-4}m²</th>
<th>I</th>
<th>7.85 · 10^{-3}m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>5.00 · 10⁶kg m⁻¹s⁻²</td>
<td>η_E</td>
<td>8.44 · 10⁹kg m⁻³s⁻¹</td>
<td>ρ</td>
<td>1.10 · 10¹kg m⁻³</td>
<td>g</td>
<td>9.81 m s⁻²</td>
</tr>
</tbody>
</table>

Table 1. Material and geometry parameters, where $A = \pi r^2$, $I = \frac{\pi}{3} r^4$ for a circular cross section of radius r. (η_E corresponds to 10% of the critical extensional viscosity.)

Figure 7 displays the essential statistical results that are typical in conjunction with the MATLAB time integrators ODE15S, a BDF multistep method of variable order, reaching from 1 to 5. For
Figure 5. Snapshot movie of a swinging plane Kirchoff rod, made of rubber-like material. It is fully clamped at the left end and free at the right end. Plotted are the centerline centroids $x_n = (x_n, y_n)$ and the cross section directors $i z_n$, which are perpendicular to the discrete tangents $x_n - x_{n-1}$, for $N = 10$.

equidistant time stepping with stepsize Δt, they read

\[
\begin{align*}
\text{BDF 1:} & \quad A(u_i)(u_i - u_{i-1}) = \Delta t F(u_i) \\
\text{BDF 2:} & \quad A(u_i)\left(\frac{3}{2}u_i - 2u_{i-1} + \frac{1}{2}u_{i-2}\right) = \Delta t F(u_i) \\
\text{BDF 3:} & \quad A(u_i)\left(\frac{11}{6}u_i - 3u_{i-1} + \frac{3}{2}u_{i-2} - \frac{1}{3}u_{i-3}\right) = \Delta t F(u_i) \\
\text{BDF 4:} & \quad A(u_i)\left(\frac{25}{12}u_i - 4u_{i-1} + 3u_{i-2} - \frac{4}{3}u_{i-3} + \frac{1}{3}u_{i-4}\right) = \Delta t F(u_i) \\
\text{BDF 5:} & \quad A(u_i)\left(\frac{137}{60}u_i - 5u_{i-1} + 5u_{i-2} - \frac{10}{3}u_{i-3} + \frac{5}{3}u_{i-4} - \frac{1}{5}u_{i-5}\right) = \Delta t F(u_i)
\end{align*}
\]

BDFs are of widespread use in multibody dynamics [1], because they are well suited for stiff systems and for systems of the form

\[A(u)\dot{u} = F(u) \]

with a regular – or even singular – state dependent, square matrix $A(u)$. Each of the systems (11) with $A = E$, (15) with $A = A_S$ and (18) with $A = E$ is of that form, $A(u)$ being regular for each u. In each time step one of the schemes in (19) is solved for the new state u_i at time t_i with a simplified Newton-Raphson method, which corrects the predictor. Here, the iteration matrix

\[
J(u_i) = aA(u_i) + \nabla u\{A(\ast)(au_i + \ldots)\}|_{\ast = u_i} - \Delta t \nabla F(u_i)
\]

is used, the parameter $a \in \{1, 3/2, 11/6, 25/12, 137/60\}$ denoting the leading coefficient according to the five BDF schemes in (19). In the experiments presented below, both Jacobians needed in (20) are approximated by finite differences.

In almost each statistical criterion, the mixed formulation turns out to be superior compared to both the redundant and the strain coordinate formulation, cf. Figure 7. This is reflected as well in
the relative computational times. The NDF schemes [10], which are as well supplied in ODE15S, perform slightly better. But the performance gain is almost not worth mentioning.

Since the computational times in MATLAB are not really objective (compared to codes from compiler languages as C, C++ or Fortran77), we estimate the total numerical effort, focussing on the numerical linear algebra performed within the right-hand side functions $F(u)$, the left-hand-side functions $A(u)\dot{u}$ and during the corrector iterations within the core integrator. The effort to compute $f(p,p)$, $G(p)$, $G(p,p)$, $M(p)$, the forward and backward recursions via ψ and ϕ within the right-hand sides – each linearly increasing – is extremely low and is neglected.

Table 2. Numerical effort in terms of r. h. s. function calls, r. h. s. Jacobian calls, l. h. s. function calls and numerical linear algebra.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>absolute ‘\cdot’=‘A’</th>
<th>strain ‘\cdot’=‘S’</th>
<th>mixed ‘\cdot’=‘M’</th>
</tr>
</thead>
<tbody>
<tr>
<td># r. h. s. function $F(u)$ evaluations</td>
<td>$5^2 \cdot 6N$</td>
<td>$8N^2$</td>
<td>$16^2 \cdot 10N$</td>
</tr>
<tr>
<td># r. h. s. Jacobians $\partial F(u)/\partial u$ evaluations</td>
<td>$(8N)^2$</td>
<td>$(4N)^2$</td>
<td>$(4N)^2$</td>
</tr>
<tr>
<td># l. h. s. function $A(u)\dot{u}$ evaluations</td>
<td>0</td>
<td>$12N^2$</td>
<td>0</td>
</tr>
<tr>
<td># LU decompositions of $J(u)$</td>
<td>$(8N)^3$</td>
<td>$(4N)^3$</td>
<td>$(4N)^3$</td>
</tr>
<tr>
<td># forward & backward substitutions</td>
<td>$(8N)^2$</td>
<td>$(4N)^2$</td>
<td>$(4N)^2$</td>
</tr>
</tbody>
</table>

We measure the numerical linear algebra ‘task’ (or ‘effort’) classically in terms of the total amount of essential operations, i.e. multiplications and divisions. Table 2 summarises, which of the five essential statistical indicators (number of r. h. s., l. h. s. function and Jacobian evaluations, number
of LU decompositions of J and number of forward & backward substitutions), is punished with which amount of essential operations. Four of those five indicators are depicted in Figure 7 as a function of N. The total numerical linear algebra task is the total sum of these essential operations.

Figure 8, depicting the total task, clearly demonstrates the superiority of choosing minimal coordinates (either ‘S’ or ‘M’). This is certainly due to the fact that the solver is not forced to decrease the time stepsizes because of mechanical redundance, see Figure 6. Clearly, this is the main reason to use them. For a large number N of elements, ‘M’ performs better than ‘S’. In addition to the increase in statistical indicators in Figure 7, the reason is that the r.h.s. function in (17) can be evaluated with linear complexity instead of (13), where the growth is quadratic.

A drawback of all three formulations proposed is the fact that the effort for numerical linear algebra during the simplified Newton corrector iterations within the core solver explodes for large N. For applications with coarse accuracy requirements, i.e. small N, such as simulation of cables and hoses in industrial assemblies, the proposed formulations in connection with BDF methods definitively have realtime capability. Possible remedies for large N are the following.

- The Jacobian J in (20) has block-banded structure. By the use of especially adapted block-banded Gaussian LU-decomposition the numerical effort might be reduced, provided that the blocks can be decomposed iteratively in a ‘save’ fashion [3].

- Further, the Jacobians for ‘A’ and ‘M’ display a certain kind of diagonal dominance. Therefore, a simplified quasi-Newton method, cutting off the diagonals with ‘small’ entries, seems to be auspicious.

If a large number of elements is required, however, one certainly cannot help but solving (9) as an index 1 DAE, not discarding the Lagrange multipliers.

For comparison, in Figure 8, we additionally included the total numerical task for ODE45, an explicit Runge-Kutta method based on the embedded scheme of Dormand and Prince [10]. Clearly, although there are no shearing oscillations/degrees of freedom contained, the Kirchhoff model is highly numerically stiff, as it emerges from continuum mechanics. Therefore – as it is for the shear flexible Reissner model [4] –, each explicit method suffers from stringent stepsize restrictions in order to run stable.

7 CONCLUSIONS

We present a discretisation of a two-dimensional plane discrete Kirchhoff rod model. The proposed choice of ‘strain’ or ‘mixed’ minimal coordinates yield promising results in accuracy and numerical task, which is worth to be examined further. The extension to discrete quaterionic Kirchhoff rods in three dimensions is straightforward and part of forthcoming work.

REFERENCES

Figure 7. Statistics in conjunction with ODE15s in MATLAB: Number of time steps, function and Jacobian evaluations, LU-decompositions, forward and backward substitutions and relative computational times. Solver tolerances RELTOL = ABSTOL = 10^{-6}.
Figure 8. Error of the solution versus total numerical linear algebra task.