A second order semi-discrete Cosserat rod model suitable for dynamic simulations in real time

Holger Lang and Joachim Linn

Fraunhofer ITWM, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany

Abstract. We present an alternative approach for a semi-discrete viscoelastic Cosserat rod model that allows both fast dynamic computations within milliseconds and accurate results compared to detailed finite element solutions. The model is able to represent extension, shearing, bending and torsion. For inner dissipation, a consistent damping potential from Antman is chosen. The continuous equations of motion, which consist of system of nonlinear hyperbolic partial differential algebraic equations, are derived from a two dimensional variational principle. The semi-discrete balance equations are obtained by spatial finite difference schemes on a staggered grid and standard index reduction techniques. The right-hand side of the model and its Jacobian can be chosen free of higher algebraic (e.g. root) or transcendental (e.g. trigonometric or exponential) functions and is therefore extremely cheap to evaluate numerically. For the time integration of the system, we use well established stiff solvers. As our model yields computational times within milliseconds, it is suitable for interactive manipulation. It reflects structural mechanics solutions sufficiently correct, as comparison with detailed finite element results shows.

Keywords: Flexible multibody dynamics, Large deformations, Small stresses and strains, Finite rotations, Constrained mechanical systems, Structural dynamics, Partial differential algebraic equations, Finite difference methods.

PACS: 40.46.De

INTRODUCTION

The Cosserat rod model [1, 17] is a well known model for the geometrically exact simulation of deformable rods – i.e. slender one dimensional flexible structures – in quasistatics or dynamics. A Cosserat rod can be considered as the geometrically nonlinear generalisation of a Timoshenko-Reissner beam. In contrast to a Kirchhoff rod, which can be considered as a geometrically nonlinear generalisation of an Euler-Bernoulli beam, a Cosserat rod allows to model not only bending and torsion – these are ‘soft’ dof –, but as well extension and shearing – these are ‘stiff’ dof. For a Cosserat rod the overall deformation as response to moderate external loads, i.e. displacements, forces or moments, may become large, although locally the stresses and strains remain small. This article is concerned with a semi-discrete finite difference model [13] of a Cosserat rod that is firmly based on structural mechanics and applicable to compute dynamical deformations very fast at sufficient accuracy. This is in contrast to the usual finite element approach, which is usually favoured in structural mechanics [3, 6, 10]. And this is in contrast to the usual way in multibody dynamics, where flexible structures are usually represented by vibrational modes of Craig and Bampton type [5, 16], which reflect only linear structural response. We derive the continuous equations of motion from a two dimensional variational principle, where we use unit quaternion parameterisation for the rotatory degrees of freedom. The aim is to have a model, whose right hand side and Jacobian is cheap to evaluate. We remark that the Cosserat model is only a ‘skeleton’ model; the reconstruction of the three dimensional displacement, stress and strain distributions through the cross sections of the rod can be conveniently carried out in a postprocessing by the use of ‘warping functions’ [8].

THE MODEL

A continuous Cosserat rod is kinematically characterised by its centerline \(x = x(s,t) : U \rightarrow \mathbb{R}^3 \) and its unit quaternion field \(p = p(s,t) : U \rightarrow \mathbb{S}^3 = \{ q \in \mathbb{H} : ||q|| = 1 \} \), the latter inducing its attached frame field \(R \circ p : U \rightarrow SO(3) \) via the Euler map \(R : \mathbb{H} \rightarrow \mathbb{R}SO(3), p \mapsto (2p_2^2 - ||p||^2)I + 2\hat{p} \otimes \hat{p} + 2p_0 \hat{\theta}(\hat{p}) \) with the Levi-Civita pseudotensor \(\hat{\theta} : \mathbb{R}^3 = \mathfrak{so}(3) \rightarrow so(3), \) defined by \(\hat{\theta}(\hat{u})v = u \times v \) for \(u, v \in \mathbb{S}(\mathbb{H}) \). Here \(U = [0,L] \times [0,T] \) is a rectangular domain in space-time, where \(s \in [0,L] \) is the arc length parameter of the centerline of the undeformed rod, \(t \in [0,T] \) is the time. The strain vector \(\Gamma \), curvature vector \(K \) and angular velocity vector \(\Omega \), each in \(\mathbb{R}^3 = \mathfrak{so}(\mathbb{H}) \) are defined by

\[
\Gamma = p \partial_s x \hat{p} - k, \quad K = 2\hat{p} \partial_t p, \quad \Omega = 2\hat{p} \partial_t \hat{p}.
\]
Here for a quaternion $p = p_0 + p_1i + p_2j + p_3k \in \mathbb{H} = \mathbb{R}^4$, $p_0 = \mathbb{R}(p)$ denotes its real part, $\bar{p} = \bar{3}(p) = p_1i + p_2j + p_3k$ its imaginary part and $\bar{p} = p_0 - p_1i - p_2j - p_3k$ is its conjugate. The potential, dissipation and kinetic energy densities are given by

$$\mathcal{V} = \frac{1}{2}(\Gamma^T C^\Gamma + K^T C^K K), \quad \mathcal{D} = \Gamma^T C^\Gamma + K^T C^K K, \quad \mathcal{E} = \frac{\rho}{2}(\|\hat{\mathbf{x}}\|^2 + \Omega^T I \Omega).$$

Here C^Γ and C^K (C^Γ and C^K) denote some symmetric and positively definite (visco-)elastic constitutive 3×3 matrices and I is the geometric moment of inertia tensor [11, 12, 17]. With $q = (x, p)$, the constraint density $2g = \|p\|^2 - 1$, exterior forces $\mathcal{F} : [0, T] \to \mathbb{H}$, momenta $\mathcal{M} : [0, T] \to \mathbb{S}^3$ and the Lagrangian $\mathcal{L} = \mathcal{E} - \mathcal{V} - g^2 \lambda$, the variational principle

$$\delta \int_U \mathcal{L} \, \mathcal{d}(s,t) - \int_U \left(\frac{\partial \mathcal{F}}{\partial \dot{q}} \delta q + \frac{\partial \mathcal{D}}{\partial q} \delta q \right) \delta(s,t) = \int_U \left(\delta \dot{x} + \mathcal{M} \delta p \right) \delta(s,t), \quad \lambda \equiv \frac{\partial}{\partial t} \rho \mathcal{A} \mathbf{x} = \partial_i (pF \rho) + p \hat{\bar{\rho}}$$

yields the following system of nonlinear hyperbolic partial differential algebraic equations

$$\rho \mathcal{A} \mathbf{x} = \partial_i (pF \rho) + p \hat{\bar{\rho}}$$

which, with given appropriate initial values and boundary conditions, has to be solved [11]. In (3) the internal forces and moments are given by $F = C^\Gamma \dot{\mathbf{x}} + 2C^\Gamma \mathbf{v}$ and $M = C^K \dot{\mathbf{x}} + 2C^K \mathbf{v}$ respectively. Here $\mu = \mu(p)$ denotes the 4×4 quaternion mass matrix [11, 14]. The equivalence of (3) to the classical Cosserat equations [1, 17]

$$\rho \mathcal{A} \mathbf{x} = \partial_i (pF \rho) + p \hat{\bar{\rho}}$$

can be readily established [11]. For the method of lines, we use (1) in order to discretise the rod on a staggered grid in the space dimension. The latter means that, given discrete vertex positions $0 = s_0 < \ldots < s_N = L$, the centroids $x_0 \equiv x(s_0)$, \ldots, $x_N \equiv x(s_N)$ are situated here, but the quaternions $p_{1/2} \approx p(s_{1/2})$, \ldots, $p_{N-1/2} \approx p(s_{N-1/2})$ belong to the segment midpoints $s_v = (s_{v-1/2} + s_{v+1/2})/2$ for $v = 1/2, \ldots, N - 1/2$. Whereas the discretisation of the strain Γ on the segment midpoints via finite differences is straightforward, for the discrete curvature K_n on the vertices s_n, we propose several choices, depending on how each two neighbouring quaternions $p_{n-1/2}$ and $p_{n+1/2}$ are interpolated to a vertex quaternion p_n for $n = 1, \ldots, N - 1$, see [12]. Each of these results in a discrete curvature expression K_n that is frame indifferent by construction, i.e. indifferent with respect to superimposed rigid body motions. For the boundary quaternions p_0 and p_N, we use the well known ghost point technique [13].

The resulting semi-discrete model in index one formulation finally becomes

$$\begin{align*}
\bar{x}_n &= \frac{1}{\rho A} \left(\delta \bigg(p F \rho \bigg) + p \bar{\delta}_n \bar{\rho} \right) \\
\bar{p}_v &= \frac{\mu}{\rho} (p F \rho) - 4p \rho \dot{p} \dot{v} + \Delta v \left(p F + \Delta v (p M) + \Delta p M v + p v M \right) - \|p v\|^2 p v \\
\bar{\lambda}_v &= 2 \left(p F + \Delta v \left(p F + \Delta v (p M) + \Delta p M v + p v M \right) \right)
\end{align*}$$

with forces $F = C^\Gamma \mathbf{v} + 2C^\Gamma \mathbf{v}$ and moments $M = C^K \mathbf{v} + 2C^K \mathbf{v}$. Here $n = 0, \ldots, N$ indicates vertex positions and $v = 1/2, \ldots, N - 1/2$ indicates midpoint positions. For the discrete difference operators in (4), several choices exist. Table 1 summarises the total operation counts for several model variants based on first order finite difference operators. For higher order difference schemes, some care has to be taken. It is clear that (4) yields a consistent discretisation of (3).

The handling of the rotatory inertia terms is more or less standard [7, 9, 14]. We point out the fact that the computation of the spherical tangential inverse $\mu(p)^{-1}$ is exactly as expensive as the computation of the quaternion mass matrix $\mu(p)$ itself [11]. Discarding the equations for the Lagrange multipliers in (4) allows to express the model in fully explicit form $\dot{q} = v, \dot{v} = f(t, q, v)$. Stabilisation of the quaternion spherical constraints via the projection or the Baumgarte method is extremely cheap, see as well the right column in table 1. Usually in finite element literature, the equivalent descriptions $\mathcal{E}(K) = R^T \partial_x R$, $\mathcal{E}(\Omega) = R^T \partial_x R$ are used instead of (1), but this approach leads to the sophisticated problem to interpolate the rotations in the manifold $SO(3)$ in a cheap and objective way [2, 3, 4, 15].
TABLE 1. Upper estimates for the total operation counts for the right hand side function f of $(q,v) = f(q,v,t), q = (x,p), v = v$, depending on the number of rod segments N.

<table>
<thead>
<tr>
<th>OPS</th>
<th>Basic model</th>
<th>Variant 1</th>
<th>Variant 2</th>
<th>Variant 3</th>
<th>Variant 4</th>
<th>Stabilisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>174N+34</td>
<td>+10N+10</td>
<td>+11N+11</td>
<td>+37N+37</td>
<td>-26N+00</td>
<td>+8N+00</td>
</tr>
<tr>
<td>−</td>
<td>111N+36</td>
<td>+15N+15</td>
<td>+27N+27</td>
<td>+03N+03</td>
<td>-10N+00</td>
<td>+1N+00</td>
</tr>
<tr>
<td>*</td>
<td>289N+90</td>
<td>+39N+39</td>
<td>+36N+36</td>
<td>+72N+72</td>
<td>-23N+00</td>
<td>-2N+00</td>
</tr>
<tr>
<td>/</td>
<td>3N+03</td>
<td>+30N+30</td>
<td>+31N+31</td>
<td>+03N+03</td>
<td>+0N+00</td>
<td>+0N+00</td>
</tr>
<tr>
<td>√</td>
<td>4N+00</td>
<td>+00N+00</td>
<td>+00N+00</td>
<td>+01N+01</td>
<td>+03N+00</td>
<td>+4N+00</td>
</tr>
<tr>
<td>arccos</td>
<td>0N+00</td>
<td>+00N+00</td>
<td>+00N+00</td>
<td>+01N+01</td>
<td>+01N+01</td>
<td>+00N+00</td>
</tr>
</tbody>
</table>

NUMERICAL EXAMPLES

The total task to evaluate $f(q,v,t)$ for the most robust curvature choice, which corresponds to variant 1, for non-equidistant discretisation and non-symmetric cross sections amounts to only $184N+44$ additions, $126N+49$ subtractions, $328N+129$ multiplications and $33N+33$ divisions. The analytical Jacobian $\partial f(q,v,t)/\partial (q,v,t)$, whose non-trivial subparts $\partial f/\partial q$ and $\partial f/\partial v$ both have upper and lower bandwidths equal to ten, is about fifteen times as expensive as f if (quaternion skew) symmetry is exploited. Figure 1 shows excellent agreement of the results of our model, computed with only ten segments, to the 3D finite element solution, computed with the package ABAQUS with 160×12 continuum elements, for a quasistatic scenario that displays non trivial coupling between bending and torsion. Other dynamic and quasistatic examples as well show excellent agreement both against 1D and 3D finite element solutions [12]. Convergence analysis reveals second order convergence of our finite difference schemes for equidistant discretisation. Figure 2 displays the computational times for a swinging rubber rod (left) and a steel string example (right), which are subjected to their own gravity. We used the solvers RODAS, SEULEX, RADAU5 – with sparse linear algebra, adapted to second order differential equations –, DASPK = DASSL and DOPRI5 with strong damping on the extensional and shearing dof.

FIGURE 1. Comparison with ABAQUS three dimensional finite element solution
CONCLUSION AND ACKNOWLEDGMENTS

We presented an alternative discrete Cosserat rod model, which yields small computational times at sufficiently correct accuracy. The model is thus adequate for multibody dynamics simulations. We wish to thank Ernst Hairer who provided us with his excellent solvers and who always gave us kind advice.

REFERENCES