Energy momentum consistent force formulation for the optimal control of multibody systems

Michael W. Koch & Sigrid Leyendecker

Multibody System Dynamics
ISSN 1384-5640
Multibody Syst Dyn
DOI 10.1007/s11044-012-9332-9
Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication.
Energy momentum consistent force formulation for the optimal control of multibody systems

Michael W. Koch · Sigrid Leyendecker

Received: 12 December 2011 / Accepted: 4 October 2012 © Springer Science+Business Media Dordrecht 2012

Abstract This work considers the optimal control of multibody systems being actuated with control forces which impact the system’s motion directly. The goal is to find a dynamically feasible trajectory of states and controls leading from an initial to a desired final state, while minimizing an objective function. The optimal control problem is solved by using a direct transcription method, i.e., boundary conditions and a discrete version of the equations of motion serve as constraints for the minimization of a cost function with respect to the discrete state and control trajectory. Here, a particular time stepping scheme, an energy momentum integrator based on discrete derivatives is used. Corresponding to a constrained formulation of multibody systems, we develop an energy momentum consistent discrete force formulation that fits into the energy momentum integrator.

Keywords Optimal control · Constrained systems · Multibody dynamics · Structure preservation · Mechanical integrators

1 Introduction

Nonlinear optimal control problems for mechanical systems consist of an objective functional, initial, and final conditions on the state, possibly path constraints and the equations of motion, which describe the underlying system’s dynamics. While indirect methods derive the necessary conditions (differential equations for the optimality, the dynamics, complementarity conditions, and the adjoint system), discretize them by some numerical method and solve them to find local solutions, a method falling into the class of direct methods (also called direct transcription methods) is used here. In direct methods, the state and control variables are discretized directly, i.e., before deriving the necessary conditions, the optimal control problem is transformed into a finite dimensional nonlinear constrained optimization
problem that can be solved by standard nonlinear optimization techniques such as sequential quadratic programming (SQP); see, e.g., [18]. Besides discrete versions of the boundary conditions and path constraints, a key ingredient are the discrete equations of motion. Depending on the time integration scheme in use, the approximate solution of the optimal control problem may or may not inherit certain characteristic or structural properties of the real solution like symplecticity or the consistent evolution of energy and momentum maps.

In [23, 33, 34], DMOC (Discrete Mechanics and Optimal Control) has been developed recently. There the discrete time stepping equations are derived via a discrete variational principle, namely a discrete analogon of the Lagrange–d’Alembert principle that covers the dynamics of mechanical systems with non conservative forces. In the context of variational integrators (see [32]), the discrete Lagrange–d’Alembert principle leads to structure preserving time stepping equations in the sense that the discrete trajectories preserve a discrete symplectic form and are consistent in momentum maps, i.e., in the presence of symmetry in the continuous dynamical system (see [1, 31, 36]), this symmetry is inherited to the discrete setting and the corresponding momentum map is conserved exactly along the discrete trajectory (in the absence of nonconservative forces). If forcing is present, the momentum map changes only and exactly according to the applied actuation.

An extension of DMOC to holonomically constrained mechanical systems, DMOCC (Discrete Mechanics and Optimal Control for Constrained systems), has been developed in [29]. The main idea there is to reduce the structure preserving discrete equations of motion resulting from a constrained version of the discrete Lagrange–d’Alembert principle to their minimal dimension using the discrete null space method. The discrete null space method in conjunction with variational integrators has been presented in [28] for forward dynamics simulations yielding a symplectic momentum integrator. It is well known since proven in [40] that it is not possible to achieve time stepping schemes for which the solution conserves momentum maps and the symplectic form as well as the energy while using constant time steps.

Originally, the discrete null space method has been developed in the context of energy momentum conserving integration schemes. It has first been introduced in [6] and developed further for rigid multibody systems in [7] and for multibody systems with flexible parts (geometrically nonlinear beams and shells) in [27]. In contrast to DMOCC, the herein discussed energy conserving integrator is based on the classical Newton–Euler equations. Many mechanical integrators are developed in the framework of the Newton–Euler equation, e.g., the conserving integrator for multibody dynamics in [25], and in a similar context, the energy consistent discretization of the equations of motion with joint constraints as outlined in [2, 21]. In [11], an energy preserving direct transcription method is used to simulate optimal control problems of multibody systems.

The scope of the present work is to develop an energy momentum consistent analogon to DMOCC, i.e., to use the discrete energy momentum consistent time stepping equations for holonomically constrained dynamics (together with boundary conditions and path constraints) as constraints for the optimization of a discrete cost function. In particular, we are interested in the optimal control of multibody dynamics where the constraints represent the coupling between the bodies by joints on the one hand (external constraints), and on the other hand, internal constraints enforce the rigidity by requiring a body fixed director triad to stay orthonormal (all constraints are dealt with using the Lagrange multiplier method, see e.g. [16, 39]). This particular so called rotation free formulation of multibody systems has many advantages (e.g., avoidance of singularities in the rotation parameterization, a constant mass matrix, easy inclusion of flexible Cosserat continua in the multibody systems (see [3, 4, 20, 22, 24]), and facilitates a structure preserving discretization of the equations of motion.
substantially compared to rotation based descriptions like minimal coordinates (see [12, 15, 38]), quaternions, etc.

When passing from forward dynamics [28] to optimal control simulations [29] for multibody systems using the symplectic momentum consistent variational integrator with discrete null space reduction and the constrained (rotation free) formulation in redundant coordinates, a parameterization of the corresponding redundant actuation forces had to be developed that fits into the symplectic momentum consistent time stepping scheme. With this regard, the kinematic assumptions of the rotation free multibody formulation have been modified slightly with respect to [7, 26] causing small modifications in the null space matrices and nodal reparameterizations of the configuration variable, which is achieved using the Rodriguez formula (see e.g. [10]). In this paper, the corresponding expressions for the discrete null space matrices and discrete actuation forces are developed for the energy momentum consistent simulation of optimal control problems in multibody dynamics.

Section 2 introduces the energy momentum consistent time stepping scheme for constrained multibody systems in rotation free formulation and its reduction via the discrete null space method. These discrete equations of motion are used in Sect. 3 in the context of the direct transcription of the optimal control problem. In Sect. 4, the major contributions of this paper is presented, namely expressions for the discrete null space matrices and actuation forces are developed and momentum consistency is proven. Finally, in Sect. 5, the performance of the proposed method is illustrated with the help of numerical examples and comparisons to DMOCC simulation results are drawn. The examples include a satellite reorientation maneuver and three-dimensional compass gait. The second example includes challenging aspects like underactuation and modeling the impact between the feet and the ground, causing the system to be transferred from one constraint manifold to another.

2 Energy momentum consistent forward dynamics simulation

This section provides a short outline of the energy momentum consistent time integration of multibody dynamics including non conservative actuation forces. This mechanical integrator is an extension of the energy momentum preserving integrator for multibody dynamics introduced in [7], where only conservative forces or dead loads are discussed. The following Sects. 2.1 and 2.2 are similar to the two-dimensional approach in [8], however, we amount to a different three-dimensional formulation of actuation forces in Sect. 4 circumventing the coordinate augmentation in [8].

2.1 Rigid multibody configuration and actuation

A rotation free formulation of the configuration variable has been introduced in [5] for rigid bodies and in [7] for multibody systems consisting of rigid bodies. The main idea is to describe the αth rigid body’s configuration as \(q^\alpha(t) \in \mathbb{R}^{12} \) being composed by the placement of its center of mass \(\varphi^\alpha(t) \in \mathbb{R}^3 \) and the right-handed director triad \(d^\alpha_I(t) \in \mathbb{R}^3 \) for \(I = 1, 2, 3 \) specifying the body’s orientation in space. Then the dimension \(k \) of the multibody’s configuration manifold \(Q \subseteq \mathbb{R}^k \) equals 12 times the number of bodies. As they form the columns of a rotation matrix, each director triad is constrained to be orthonormal at all times \(t \) in the considered time interval \([t_0, t_N] \subseteq \mathbb{R} \). Further constraints specify the interconnection of the bodies by joints in a multibody system. All constraints are scleronomic and holonomic and are summarized in the function \(g : \mathbb{R}^k \rightarrow \mathbb{R}^m \) defining the \((k - m) \)-dimensional constraint manifold \(C = \{ q \in Q \mid g(q) = 0 \} \). For many multibody systems, a reparameterization in generalized coordinates \(F : \mathbb{R}^{k-m} \rightarrow C \) with \(q = F(u) \in C \) can be found.
Let the generalized forces $\tau \in \mathbb{R}^{k-m}$ actuate the degrees of freedom of the system directly. Then a corresponding k-dimensional redundant actuation force $f \in T^*_q Q$ can be computed via $f(q) = B^T(q) \cdot \tau$ with the input transformation matrix $B^T \in \mathbb{R}^{k \times (k-m)}$. Note that $T Q$ and $T^*_Q Q$ denote the tangent bundle and the cotangent bundle of the configuration manifold, respectively, where velocities $\dot{q} \in T_q Q$ and conjugate momenta $p \in T^*_q Q$ naturally live (see, e.g., [31] for details).

2.2 Energy momentum consistent discretization of the DAEs

Let the Hamiltonian of the multibody system be the sum of the kinetic energy $T : T^*_Q Q \rightarrow \mathbb{R}$ reading $T(p) = \frac{1}{2} p^T \cdot M^{-1} \cdot p$ and a potential energy $V : Q \rightarrow \mathbb{R}$. Note that the formulation in redundant coordinates leads to a constant mass matrix $M \in \mathbb{R}^{k \times k}$ that facilitates the structure preserving time discretization substantially.

Hamilton’s equations for constrained dynamics yield a differential algebraic system (DAEs) reading

$$
\dot{q} = M^{-1} \cdot p, \quad \dot{p} = -\nabla V(q) - G^T(q) \cdot \lambda + f(q), \quad g(q) = 0.
$$

Here, G denotes the Jacobian of the constraints and $\lambda \in \mathbb{R}^{m}$ the corresponding vector of Lagrange multipliers.

Let’s consider a time grid $\{t_n = n \Delta t \mid n = 0, \ldots, N\}$ where Δt denotes the finite time step and introduce approximations $q_n \approx q(t_n)$, $p_n \approx p(t_n)$ and $\lambda_n \approx \lambda(t_n)$. Replacing time derivatives in (1) by finite difference quotients, and derivatives with respect to the phase variables by the discrete derivative \bar{V} according to [19], leads to a discrete version of the DAEs

$$
\frac{q_{n+1} - q_n}{\Delta t} = M^{-1} \cdot p_{n+\frac{1}{2}},
$$

$$
\frac{p_{n+1} - p_n}{\Delta t} = -\bar{V}(q_n, q_{n+1}) - \bar{G}^T(q_n, q_{n+1}) \cdot \lambda_{n+1} + \bar{f}(q_n, q_{n+1}),
$$

$$
\mathbf{g}(q_{n+1}) = 0,
$$

where $p_{n+\frac{1}{2}} = \frac{1}{2} (p_n + p_{n+1})$ denotes the momentum midpoint and $\bar{G} = \bar{V}g$ is the discrete derivative of the constraints. The discrete derivative is designed such that in the absence of nonconservative forces, the system’s total energy and at most quadratic momentum maps (arising in the presence of symmetries according to Noether’s theorem; see, e.g., [31]) are exactly preserved along the discrete phase trajectory $\{(q_n, p_n)\}_{n=0}^N$ being a solution of (2)–(4). However, we are determined to simulate optimally controlled multibody dynamics, thus nonconservative forces are naturally present and energy and momentum maps do change along the solution of (1) according to the influence of the actuation forces, for example, assuming that the actuation force $f(t) = f_n$ is constant in the time interval $[t_n, t_{n+1}]$, the continuous system’s (1) change in energy is given by

$$
T(p(t_{n+1})) + V(q(t_{n+1})) - T(p(t_n)) - V(q(t_n))
$$

$$
\left[-3p \cdot f(t) \right] = \int_{t_{n+1}}^{t_{n+1}} \dot{q}^T(t) \cdot f(t) \, dt = (q(t_{n+1}) - q(t_n))^T \cdot f_n.
$$

Let $\bar{f} \in \mathbb{R}^3$ denote the sum of all torques applied to the multibody system. This includes external torques applied directly to the bodies, torques resulting from excentrically applied
external translational forces and torques resulting from conservative forces induced by the potential (note that torques in interior joints do not contribute here, since they are applied with different signs to the adjacent bodies and therefore sum up to zero). Again assuming that \(\tau(t) = \tau_n \) is constant during a time interval, the change in angular momentum for the continuous system (1) is given by

\[
\mathbf{L}(\mathbf{q}(t_{n+1}), \mathbf{p}(t_{n+1})) - \mathbf{L}(\mathbf{q}(t_n), \mathbf{p}(t_n)) = \phi^\alpha(t_{n+1}) \times \mathbf{p}_\phi^\alpha(t_{n+1}) + \mathbf{d}_\phi^\alpha(t_{n+1}) \times (\mathbf{p}_\phi^\alpha(t_{n+1}) - \phi^\alpha(t_n) \times \mathbf{p}_\phi^\alpha(t_n) - \mathbf{d}_\phi^\alpha(t_n) \times \mathbf{p}_\phi^\alpha(t_n) - \Delta t \hat{\tau}_n.
\]

where sums run over the repeated indices. In this case, an energy momentum consistent simulation means that the changes of energy and momentum maps along the discrete phase trajectory are exactly equal to the changes along the continuous system. Concerning the simulation means that the changes of energy and momentum maps along the discrete phase trajectory are exactly equal to the changes along the continuous system.

Thus, if the same constant force is applied to the continuous and the discrete system, both do effect exactly the same change in the system’s total energy, thus the integrator (2)–(4) is energy consistent. Furthermore, if only conservative forces are present, the total energy is conserved exactly.

2.3 Discrete null space method and reparameterization

After solving (2) for \(\mathbf{p}_{n+1} \) and inserting it into (3), the constrained energy momentum scheme is \((k + m)\)-dimensional, and has to be solved for \(\mathbf{q}_{n+1} \) and \(\lambda_{n+1} \). To reduce the system’s dimension to the minimal possible number, we use the discrete null space method; see \([6, 7]\) for details. The discrete null space matrix \(\mathbf{P} \in \mathbb{R}^{k \times (k-m)} \) has the property

\[
\text{range}(\mathbf{P}(\mathbf{q}_n, \mathbf{q}_{n+1})) = \text{null}(\hat{\mathbf{G}}(\mathbf{q}_n, \mathbf{q}_{n+1})).
\]

Premultiplying the energy momentum scheme by the transposed discrete null space matrix yields

\[
\mathbf{P}^T(\mathbf{q}_n, \mathbf{q}_{n+1}) \cdot \left[\frac{2}{\Delta t} \mathbf{M} \cdot (\mathbf{q}_{n+1} - \mathbf{q}_n) - 2\mathbf{p}_n + \Delta t \hat{\mathbf{V}}(\mathbf{q}_n, \mathbf{q}_{n+1}) - \Delta t \hat{\mathbf{f}}(\mathbf{q}_n, \mathbf{q}_{n+1}) \right] = \mathbf{0}.
\]

The incremental generalized coordinate vector \(\mathbf{u}_{n+1} \in \mathbb{R}^{k-m} \) is used to reparameterize the constraint manifold in the neighborhood of \(\mathbf{q}_n \in C \). Accordingly, the nodal reparameterization \(\mathbf{F}_d : \mathbb{R}^{k-m} \times C \to C \) reads \(\mathbf{q}_{n+1} = \mathbf{F}_d(\mathbf{u}_{n+1}, \mathbf{q}_n) \). Insertion into (6) makes (4) superfluous and one ends up with a \((k-m)\)-dimensional system of discrete equations of motion.

\(\hat{\mathbf{f}} \) Springer
addition to the size reduction, possible conditioning issues related to the presence of the Lagrange multipliers are resolved in the reduced scheme. Analogous to the continuous case described in Sect. 2.1, let the discrete forces be given by

$$\bar{f}(q_n, q_{n+1}) = \bar{B}^T(q_n, q_{n+1}) \cdot \tau_n,$$

and denote the sequences of discrete generalized coordinates and forces by $$u_d = \{u_n\}_{n=0}^N$$ and $$\tau_d = \{\tau_n\}_{n=0}^{N-1}$$, respectively. Note that the force sequence is one element shorter since forces are assumed to be constant during a time interval. Insertion of the configuration and force reparameterization into (6) results in the reduced energy momentum consistent discrete equations of motion

$$P^T(q_n, F_d(u_{n+1}, q_n)) \cdot \left[\frac{2}{\Delta t} M \cdot (F_d(u_{n+1}, q_n) - q_n)
- 2p_n + \Delta t \tilde{V}(q_n, F_d(u_{n+1}, q_n)) - \Delta t \tilde{B}^T(q_n, F_d(u_{n+1}, q_n)) \cdot \tau_n \right] = 0.$$

(8)

3 Simulation of the optimal control problem

The goal of an optimal control problem in multibody dynamics is to determine an optimal phase trajectory and the corresponding force field to steer the system from a given initial phase $$(q^0, p^0) \in T^*C$$ to a final phase $$(q^N, p^N) \in T^*C$$ while an objective functional is minimized and of course, the equations of motion are fulfilled. Furthermore, path constraints in the form equality or inequality conditions can be imposed on the trajectories. Solving the optimal control problem by a direct transcription method yields a constrained optimization problem. With the discrete cost function $$B_d : \mathbb{R}^{k-m} \times \mathbb{R}^{k-m} \rightarrow \mathbb{R}$$, the discrete objective function reads

$$J_d(u_d, \tau_d) = \sum_{n=0}^{N-1} B_d(u_{n+1}, \tau_n).$$

Now, the constrained optimization problem takes the form

$$\min_{u_d, \tau_d} J_d(u_d, \tau_d)$$

subject to

- initial conditions $$h_0(q_0, p_0, q^0, p^0) = 0,$$
- final conditions $$h_N(q_N, p_N, q^N, p^N) = 0,$$
- discrete path constraints $$h_d(u_d, \tau_d) \geq 0,$$
- discrete equations of motion (8),

where $$h_d : \mathbb{R}^{N(k-m)} \times \mathbb{R}^{(N-1)(k-m)} \rightarrow \mathbb{R}^k$$ denotes $$k$$ path constraints. The functions $$h_0, h_N : T^*Q \times T^*C \rightarrow \mathbb{R}^{2(k-m)}$$ ensure that the initial and final conditions are fulfilled without imposing redundant conditions. In summary, the constrained optimization problem (9) is the energy momentum consistent counterpart to the problem in [29], where the discrete equations of motion constitute a symplectic momentum consistent scheme.
4 Energy momentum consistent optimal control simulation of multibody dynamics

In this section, we follow the concept of multibody actuation introduced in [29]. Indeed the continuous expressions of all relevant quantities, e.g., the null space matrices and input transformation matrices are reused here. However, their discrete counterparts are newly derived to ensure energy momentum consistency.

4.1 Actuation of the rigid body

In the simplest case, a single rigid body is influenced by a translational force \(\tau_\phi \in \mathbb{R}^3 \) at a material point \(\varrho^{rb} = \varrho^j d_j \in \mathbb{R}^3 \) away from the center of mass, and a torque \(\tau_\theta \in \mathbb{R}^3 \). Accordingly, the generalized force vector for the rigid body reads \(\tau_{rb} = [\tau_\phi, \tau_\theta] \in \mathbb{R}^6 \). It can be mapped to the redundant force vector; see Fig. 1, via

\[
f = \begin{bmatrix} f_\phi \\ f_1 \\ f_2 \\ f_3 \end{bmatrix} = B^T(q) \cdot \tau_{rb} \in \mathbb{R}^{12},
\]

with the input transformation matrix \(B^T(q) = P_{int}(q) \cdot N \cdot C_{rb} \) reading in detail

\[
B^T(q) = \begin{bmatrix} 1 & 0 \\ 0 & -\hat{d}_1 \\ 0 & -\hat{d}_2 \\ 0 & -\hat{d}_3 \end{bmatrix} P_{int}(q) \cdot \begin{bmatrix} I & 0 \\ 0 & \frac{1}{2} I \\ N & C_{rb}(q) \end{bmatrix} \in \mathbb{R}^{12 \times 6}.
\]

In order to simulate actuated rigid body dynamics using the discrete equations of motion (8), appropriate discrete expressions of the null space matrix and the input transformation matrix must be derived. As shown in [7], for the single rigid body, a simple midpoint evaluation \(P_{int}(q_n, q_{n+1}) = P_{int}(q_{n+\frac{1}{2}}) \) yields the discrete null space matrix. However, due to the nonorthonormality of the director midpoints, the derivation of an energy momentum consistent discrete input transformation matrix is more complex, it takes the form

\[
\tilde{B}^T(q_n, q_{n+1}) = \tilde{P}(q_n, q_{n+1}) \cdot \tilde{N}(q_n, q_{n+1}) \cdot C_{rb}(q_{n+\frac{1}{2}}),
\]

Fig. 1 The redundant forces \(f \) acting on a free rigid body

\[\text{Springer} \]
with

\[
\bar{P}(q_n, q_{n+1}) = \begin{bmatrix}
I & 0 \\
0 & -(d_2 \times d_3)_{n+\frac{1}{2}} \\
0 & -(d_3 \times d_1)_{n+\frac{1}{2}} \\
0 & -(d_1 \times d_2)_{n+\frac{1}{2}}
\end{bmatrix} \in \mathbb{R}^{12 \times 6}
\]

and the diagonal matrix

\[
\bar{N}(q_n, q_{n+1}) = \begin{bmatrix}
I & 0 \\
0 & \frac{1}{2}[(d_1)_{n+\frac{1}{2}} \cdot (d_2 \times d_3)_{n+\frac{1}{2}}]^{-1}I
\end{bmatrix} \in \mathbb{R}^{6 \times 6}.
\]

Here, \((\hat{d}_I \times d_J)_{n+\frac{1}{2}}\) denotes the hat mapping (resulting in a skew symmetric matrix, see e.g. [31]) of the vector resulting from the cross product of director midpoints. With the preceding matrices, the definition of the discrete redundant forces (7) guarantees that the change in angular momentum along the solution trajectory is induced only by the effect of the discrete generalized forces \(\tau_{\theta b}\) and the potential energy. It is shown in detail in Appendix A.1 that angular momentum changes according to

\[
L(q_{n+1}, p_{n+1}) - L(q_n, p_n) = \Delta t \left[\varphi_{n+\frac{1}{2}} \times \varphi_{n+\frac{1}{2}} + \varphi_{n+\frac{1}{2}} \times \varphi_{n+\frac{1}{2}} + \tau_{\theta n} \\
- \varphi_{n+\frac{1}{2}} \times \nabla_{\varphi} V(q_{n}, q_{n+1}) - (d_I)_{n+\frac{1}{2}} \times \nabla_{d_I} V(q_{n}, q_{n+1}) \right]
= \Delta t \hat{\tau}_{\theta n}.
\]

This expression is in accordance with the change of angular momentum in the continuous dynamical system (5).

Remark 1 Let us consider the case that only a torque \(\tau_{\theta}\) is applied to the rigid body while the translational force is zero. Inserting the time continuous input transformation matrix (11) into (10) results in the forces

\[
f_I = \frac{1}{2} \tau_{\theta} \times d_I
\]

on the directors for \(I = 1, 2, 3\). In the discrete setting, insertion of (12) into (7) yields

\[
\bar{f}_I(q_n, q_{n+1}) = \frac{1}{2} (\tau_{\theta})_n \times \left(\frac{d_J \times d_K}{(d_J \times (d_2 \times d_3))_{n+\frac{1}{2}}} \right)_{n+\frac{1}{2}}
\]

for even permutations of the indices \(I, J, K\), where the vectors \((d^I)_{n+\frac{1}{2}}\) are dual to \((d_I)_{n+\frac{1}{2}}\), i.e., \((d^I)_{n+\frac{1}{2}} \cdot (d_I)_{n+\frac{1}{2}} = \delta^I_J\) holds. Note that there exist several alternative ways to compute dual vectors. Thus, what we have proposed here is one possible example to compute consistent discrete director forces fulfilling the general condition \(\bar{f}_I(q_n, q_{n+1}) = \frac{1}{2} (\tau_{\theta})_n \times (d^I)_{n+\frac{1}{2}}\), which has originally been derived in Eq. (56) in [9].
4.2 Actuation of a kinematic pair

In addition to τ_{rb} acting on one of the bodies from outside the multibody system, the relative motion of the pair can be influenced by generalized joint forces $\tau^{(J)} \in \mathbb{R}^{r^{(J)}}$ acting on both bodies, where $r^{(J)} \in \mathbb{N}$ is the number of relative degrees of freedom permitted by the specific joint. This is illustrated in Fig. 2. According to the third Newtonian axiom, the resulting forces and momenta on the respective bodies are equal, but opposite in sign. As in (7), in the discrete setting, they can be computed according to

$$\bar{f}(q_n, q_{n+1}) = \begin{bmatrix} \bar{f}^1(q_n, q_{n+1}) \\ \bar{f}^2(q_n, q_{n+1}) \end{bmatrix} = \bar{B}^T(q_n, q_{n+1}) \cdot \begin{bmatrix} \tau_{rb} \\ \tau_n^{(J)} \end{bmatrix} \in \mathbb{R}^{24}, \quad (13)$$

with the $24 \times (6 + r^{(J)})$ matrix

$$\bar{B}^T(q_n, q_{n+1}) = \begin{bmatrix} P(q_n^1, q_{n+1}^1) & 0 \\ 0 & P(q_n^2, q_{n+1}^2) \end{bmatrix} \cdot \begin{bmatrix} \bar{N}(q_n^1, q_{n+1}^1) & 0 \\ 0 & \bar{N}(q_n^2, q_{n+1}^2) \end{bmatrix} \cdot \begin{bmatrix} C_{rb}(q_{n+\frac{1}{2}}) & C^{1,(J)}(q_{n+\frac{1}{2}}) \\ 0 & C^{2,(J)}(q_{n+\frac{1}{2}}) \end{bmatrix} \quad (14)$$

and the $6 \times r^J$ matrices $C^{\alpha,(J)}(q), \alpha = 1, 2$ being specified according to the specific joint in use.

Remark 2 As explained in the Introduction, in the first work on the actuation of rigid multibody systems in rotation free formulation (i.e., in the constrained director formulation) [29], the kinematic assumptions have been modified with respect to [7, 26] to derive a momentum consistent actuation in redundant forces. This comes along with a modification of the null space matrix and the nodal reparameterization. The new reparameterization given in [29] is valid here.

However, since [29] is a symplectic momentum consistent formulation, there the discrete null space matrix coincides with the evaluation of the continuous one at a certain discrete configuration. In contrast to that, in the energy momentum consistent setting, the discrete null space matrix not necessarily coincides with the evaluation of the continuous one. Admittedly, for the single rigid body and the spherical pair, $P(q_n, q_{n+1}) = P(q_{n+\frac{1}{2}})$ holds in the energy momentum setting, however, for the other kinematic pairs, the appropriate energy momentum consistent discrete null space matrices are given here. In contrast to that, the blocks composing the matrix C being the third factor in the input transformation matrix are simply midpoint evaluations of the continuous blocks as indicated in (14).
4.2.1 Actuation of the cylindrical pair

The relative motion of the cylindrical pair is composed by a relative translation in the direction of the unit vector \(\mathbf{n}_1 = n_1^1 \mathbf{d}_j^1 \) which is fixed in the first body and a relative rotation about \(\mathbf{n}_1 \). Together with \(\mathbf{m}_k^1 = (m_k^1) \mathbf{d}_j^1 \) for \(k = 1, 2 \), the three vectors constitute a right-handed orthonormal frame \(\{ \mathbf{m}_1^1, \mathbf{m}_2^1, \mathbf{n}_1^1 \} \). Actuation of the cylindrical pair takes place in form of a translational force \(\tau^\text{(C)}_\varphi \in \mathbb{R} \) in the direction of \(\mathbf{n}_1 \) and a torque \(\tau^\text{(C)}_\theta \in \mathbb{R} \) about the same axis. The blocks in the input transformation matrix read

\[
C^{1,(C)}(\mathbf{q}) = \begin{bmatrix}
-\mathbf{n}_1^1 \\
(\varphi^1 - \varphi^2) \times \mathbf{n}_1^1 \\
\mathbf{n}_1^1 \end{bmatrix} \quad \text{and} \quad C^{2,(C)}(\mathbf{q}) = \begin{bmatrix}
\mathbf{n}_1^1 \\
0 \\
\mathbf{n}_1^1 \end{bmatrix},
\]

(15)

they distribute the relative force and torque according to action equals reaction to the two bodies. Furthermore, in case that the axis \(\mathbf{n}_1 \) is not parallel to the line connecting the two centers of mass, the torque \([(\varphi^1 - \varphi^2) \times \mathbf{n}_1^1] \tau^\text{(C)}_\varphi \) acts on the pair, which is assigned to the first body.

Proposition 1 Actuating the cylindrical pair according to (13), (14), and (15) with \(\tau_{\text{ub}} = 0 \) and \(\tau^\text{(C)}_n = [\tau^\text{(C)}_\varphi, \tau^\text{(C)}_\theta] \neq 0 \) results in exact conservation of the angular momentum.

Proof The change in angular momentum can be computed as

\[
L(\mathbf{q}_{n+1}, \mathbf{p}_{n+1}) - L(\mathbf{q}_n, \mathbf{p}_n) = -\Delta t \cdot \varphi^1_{n+\frac{1}{2}} \times \mathbf{n}_1^1 \tau^\text{(C)}_\varphi + \Delta t \cdot \left[(\varphi^1_{n+\frac{1}{2}} - \varphi^2_{n+\frac{1}{2}}) \times \mathbf{n}_1^1 \tau^\text{(C)}_\varphi - \mathbf{n}_1^1 \tau^\text{(C)}_\theta \right] + \Delta t \cdot \mathbf{n}_1^1 \tau^\text{(C)}_\theta,
\]

thus angular momentum is conserved and the time stepping scheme (8) is momentum consistent. \(\square \)

The null space matrix associated with a kinematic pair takes the form

\[
\mathbf{P}^{(J)}(\mathbf{q}) = \begin{bmatrix}
\mathbf{P}_{\text{int}}(\mathbf{q}^1) & 0_{12 \times r_f} \\
\mathbf{P}_{\text{int}}(\mathbf{q}^2) \cdot \mathbf{P}^{2,(J)}_{\text{ext}}(\mathbf{q})
\end{bmatrix}.
\]

The energy momentum consistent discrete version of the upper block is obtained by midpoint evaluation. However, due to the fact that the orthonormality condition for the directors holds at the time nodes (and generally not their midpoints), the discrete counterpart of the lower block is more involved, it is given by

\[
\mathbf{P}_{\text{int}}(\mathbf{q}^2_{n+\frac{1}{2}}) \cdot \mathbf{P}^{2,(C)}_{\text{ext}}(\mathbf{q}_n, \mathbf{q}_{n+1}) = \begin{bmatrix}
\mathbf{I}_{11}^1_{n+\frac{1}{2}} & \mathbf{e}^2_{n+\frac{1}{2}} & \mathbf{q}^1_{n+\frac{1}{2}} & -\mathbf{q}^1_{n+\frac{1}{2}} - u^2 \mathbf{n}_{n+\frac{1}{2}}^1 \times (\mathbf{m}_1^1 \times \mathbf{m}_2^1)_{n+\frac{1}{2}} & -\mathbf{e}^2_{n+\frac{1}{2}} \times \mathbf{n}_{n+\frac{1}{2}}^1 \\
0 & \mathbf{I}_{11}^1_{n+\frac{1}{2}} & 0 & 0 & 0 \\
0 & 0 & \mathbf{I}_{11}^1_{n+\frac{1}{2}} & 0 & 0 \\
0 & 0 & 0 & \mathbf{I}_{11}^1_{n+\frac{1}{2}} & 0
\end{bmatrix},
\]
with the matrices
\[
\tilde{I}_{11_{n+\frac{1}{2}}} = I - (m^1_1 \times m^1_2)_{n+\frac{1}{2}} \otimes (m^1_1 \times m^1_2)_{n+\frac{1}{2}} \in \mathbb{R}^{3\times3}
\]
and
\[
\tilde{I}_{11_{n+\frac{1}{2}}} = (I - n^1_{n+\frac{1}{2}} \otimes n^1_{n+\frac{1}{2}}) \in \mathbb{R}^{3\times3}.
\]

4.2.2 Actuation of the spherical, revolute, prismatic, and planar pair

Since the kinematic assumptions for the spherical pair in [29] have not changed relative to [7, 26], the null space matrix is not rewritten here. Furthermore, the proof of momentum consistency is straightforward and, therefore, not shown. The revolute and prismatic pair can be described by eliminating the translational or rotational degree of freedom from the cylindrical pair, respectively. The corresponding columns in the input transformation blocks and in the discrete null space matrix can be omitted. The input transformation matrix as well as the continuous null space matrix being in accordance with the new kinematic assumptions can be found in [29]. Their discrete counterparts can be derived along the lines of the procedure for the cylindrical pair. The same holds for the proof of momentum consistency.

5 Numerical examples

5.1 Optimal control of a satellite reorientation maneuver

This simplified model of a satellite (illustrated in Fig. 3) has been investigated in [29] using the symplectic momentum consistent optimal control method DMOCC and these results are used for comparison here.

The multibody system consists of a main body to which momentum wheels are connected by revolute joints. The goal is to perform a rest-to-rest reorientation maneuver from the initial orientation \([d^0_1, d^0_2, d^0_3] = \exp(u^0_0 \theta)\) with \(u^0_0 = 0\) into the final orientation \([d_N^1, d_N^2, d_N^3] = \exp(u_N^0 \theta)\) with \(u_N^0 = \frac{\pi}{\sqrt{14}}[1, 2, 3]\) while minimizing the control effort, i.e., \(J_d(u_d, \tau_d) = \Delta t \sum_{n=0}^{N-1} ||\tau_n||^2\). The initial condition on the main body’s orientation can

![Initial configuration of the satellite model. The frame indicates the desired final positions of the rotor centers](image)
simply be written as $(\mathbf{u}_0)_0 = \mathbf{u}_0^0$ while the final orientation is enforced via $(\mathbf{d}_I)^T \cdot \mathbf{d}_I^N = 1$ for $I = 1, 2, 3$. The total maneuver time is $T = 5$ s and the optimal DMOCC solution serves as an initial guess for the SQP solver fmincon, which is part of the optimization toolbox in Matlab. Thus, just as in [29], the absolute reparameterization $\mathbf{q}_n = \mathbf{F}_d(\mathbf{u}_n, \mathbf{q}_0)$ is used for the presented results. Note that the specification of the final configuration conditions is independent of the choice of a relative or absolute reparameterization.

Figure 4 shows that the torque evolution, being the control sequence for this example, is very similar for both schemes. Their maximum absolute difference takes an value of 61 Nm at the beginning of the maneuver. For both methods, angular momentum is conserved exactly inside the numerical limits, which is shown in Fig. 5. Finally, Fig. 6 depicts the energy evolution which is also quite similar; the maximum relative difference amounts to about 7%. These results have been obtained for $N = 30$ time steps and the differences get smaller when N increases.

The values of the cost function for both schemes are plotted in Fig. 7 versus the number of time steps, and can be observed, that the curves converge to the same value. It is interesting to note that the energy-momentum scheme approaches the limit from above while the symplectic-momentum scheme approaches it from below. At this point, we can not provide a good explanation for that, however, we want to note that this does not contradict the fact that a minimum control effort problem is solved with increasing accuracy; see, e.g., [17].
5.2 Optimal control of three-dimensional compass gait

The following example of a very simple walker model is used to illustrate the comparison between the energy momentum method and the symplectic momentum method for a three-dimensional compass gait. Compass gait has been previously addressed with various biped models in the literature, for example, in [37] and [13]. In [30], the gait of the same walker is simulated using DMOCC. Here, the theory of nonsmooth mechanics is just mentioned briefly in the context of the numerical example; details can be found in [35].

We model the three-dimensional compass biped with rigid legs that are connected at the hip by spherical joint. The torso is represented by a point mass in the hip; see Fig. 8. The three-dimensional compass gait is subdivided in three specific sections, namely the two swing phases and the double stance configuration. The contact between one foot and the ground is modeled as a perfectly plastic impact, constraining the foot to stay fixed on the ground during the other leg’s swing phase. The contact is transferred instantly when one leg
hits the ground and the other one is released. During the two swing phases, the walker has six degrees of freedom. The two legs are actuated by a three-dimensional torque at the hip, thus the system is underactuated.

5.2.1 Multibody configuration and constraints

In the constrained multibody formulation, the configuration vector $\mathbf{q}(t) \in \mathbb{R}^{27}$ consists of the bodies configuration $\mathbf{q}^1(t), \mathbf{q}^2(t) \in \mathbb{R}^{12}$ and the placement $\mathbf{q}^M(t) \in \mathbb{R}^3$ of the point mass in the hip. Rigidity of the two legs gives rise to $m_{\text{int}} = 12$ internal constraints $\mathbf{g}_{\text{int}} = \mathbf{0}$ requiring orthonormality of the two director triads. During a swing phase, the stance foot is fixed on the ground in contact with the ground. Let us assume that during the first swing phase the first foot is read $\mathbf{g}_{\text{in}}(\mathbf{q}) = 0 \in \mathbb{R}^3$. Furthermore, the spherical joint S_{H} connects the two legs in the hip via $\mathbf{g}_{S_{H}}(\mathbf{q}) = 0 \in \mathbb{R}^3$ and the point mass is held in place by the condition $\mathbf{g}_{M}(\mathbf{q}) = \mathbf{0} \in \mathbb{R}^3$. In summary, depending on the actual swing phase, $m_{\text{ext}} = 9$ external constraints are necessary. The complete vector of constraint function reads

$$
\mathbf{g}_a = \begin{bmatrix}
\mathbf{g}_{\text{int}}(\mathbf{q}) \\
\mathbf{g}_{\text{in}}(\mathbf{q}) \\
\mathbf{g}_{S_{H}}(\mathbf{q}) \\
\mathbf{g}_{M}(\mathbf{q})
\end{bmatrix},
$$

with

$$
\mathbf{g}_{\text{in}}(\mathbf{q}) = \varphi^\alpha + \varphi_{S_{\alpha}}^\alpha - \mathbf{x}_{\text{in}}, \quad \text{for } \alpha = 1, 2,
$$

$$
\mathbf{g}_{S_{H}}(\mathbf{q}) = \varphi^1 + \varphi_{S_{H}}^1 - \varphi^2 - \varphi_{S_{H}}^2,
$$

$$
\mathbf{g}_{M}(\mathbf{q}) = \mathbf{q}^M - \varphi^1 - \varphi_{S_{H}}^1.
$$

The vectors $\varphi_{S_{\alpha}}^\alpha = (\varphi_{S_{\alpha}}^\alpha) \cdot \mathbf{d}_{\alpha}^j$ point from the center of mass of the αth body to the specific joint $J \in \{S_1, S_2, S_{H}\}$.

5.2.2 Transfer of contact

The two swing phases are separated by the double stance configuration when both legs are in contact with the ground. Let us assume that during the first swing phase the first foot is fixed on the ground in \mathbf{x}_{S_1}. As soon as the scalar contact condition $\mathbf{g}_c(\mathbf{q}) = (\varphi^2 + \varphi_{S_2}^2)^T \cdot \mathbf{e}_3 = 0$ holds, the second foot establishes contact with the ground and \mathbf{x}_{S_2} is determined (not prescribed) for the contact configuration. Thus, we model the transfer of contact as the concurrent release of the bilateral constraint \mathbf{g}_1 and the establishing of the new constraint function \mathbf{g}_2, i.e., the system is transferred from the constraint manifold $C_1 = \{\mathbf{q} \in \mathbb{R}^{27} | \mathbf{g}_1(\mathbf{q}) = \mathbf{0}\}$ into $C_2 = \{\mathbf{q} \in \mathbb{R}^{27} | \mathbf{g}_2(\mathbf{q}) = \mathbf{0}\}$. One has to verify for the resulting motion that the constraint forces are oriented into the ground, thus they prevent the foot from penetrating the ground and do never prevent the lifting of the foot. The velocity at the point of contact must have a positive component towards the contact surface.

Due to the periodic boundary conditions explained below, it can be assumed without loss of generality that the impact of the second foot on the ground takes place at a selected time node t_i. The contact force $\mathbf{f}_c \in T_{q_i}C_2$ immobilizes the second foot in its point of contact and is given by $\mathbf{f}_c = \bar{\mathbf{G}}_{S_2}(\mathbf{q}, \mathbf{q}_{i+1}) \cdot \lambda_c$. Using the expressions for the discrete conjugate momentum (18) and (19), the discrete contact transfer equations take the form

$$
\mathbf{p}_c(\mathbf{q}_{i+1}) - \mathbf{p}_c(\mathbf{q}_i, \mathbf{q}_{i+1}) + \mathbf{f}_c = \mathbf{0},
$$

$$
\mathbf{g}_2(\mathbf{q}_{i+1}) = \mathbf{0}.
$$

Similar to the reduction of the time stepping equations (8), the transition equations can be reduced to $k - m$ equations inserting the nodal discrete reparameterization for C_2 and...
Energy momentum consistent force formulation for the optimal control

5.2.3 Periodic boundary conditions

It is assumed that the swing phases of the two different legs are identical mirror images of each other, and the gait is periodic as can be seen in Fig. 9. Then it is possible to optimize only a half-gait cycle and the corresponding final state is a mirrored image of the initial state, which is translated in the walking direction $\mathbf{d}_W \in \mathbb{R}^3$ by the step length which can be computed as $\text{sl} = (\mathbf{x}_{S_2} - \mathbf{x}_{S_1})^T \cdot \mathbf{d}_W$. The mirror plane is spanned by the vertical unit vector (being the direction of gravity) and the walking direction. Is placed in the middle between the two points of contact between the feet and the ground, whereby their distance is measured perpendicular to the walking direction. Let $\text{mirr} : \mathbb{R}^3 \to \mathbb{R}^3$ denote a mirror function, then it is possible to define the periodicity constraints requiring that one leg’s directors and momenta at t_0 are the mirror images of the other leg’s directors and momenta at t_N, respectively; see Fig. 10. Thus, for $I = 1, 2, 3$, they read

$$d_{1I} = \text{mirr}(d_{2I}) , \quad d_{2I} = \text{mirr}(d_{1I}) ,$$

$$p_{1I} = \text{mirr}(p_{2I}) \quad \text{and} \quad p_{2I} = \text{mirr}(p_{1I}) .$$

The mirroring of the momenta can be avoided by increasing the number of time nodes by one and transforming the momentum boundary conditions into relations between \mathbf{q}_0
and q_{N-1} and between q_1 and q_N, respectively. In that case, the half-gait cycle takes place in the time interval $[t_0, t_{N-1}]$ and the first configuration of the second half is included in the simulation. Note that in this case, also the control variable in the first and last time interval must be related by mirroring. In summary, the periodic boundary relations can be expressed as mirror images of the configuration and control variables according to

$$d^1_{t_0} = \text{mirr}(d^2_{t_{N-1}}), \quad d^2_{t_0} = \text{mirr}(d^1_{t_{N-1}}),$$

$$d^1_{t_1} = \text{mirr}(d^2_{t_N}), \quad d^2_{t_1} = \text{mirr}(d^1_{t_N}) \quad \text{and} \quad \tau_0 = \text{mirr}(\tau_{N-1}).$$

5.2.4 *Discrete objective function and the discrete constrained optimization problem*

The discrete objective function for the walker reads

$$J(u_d, \tau_d) = \frac{\Delta t}{s_l(u_d, \tau_d)} \sum_{n=0}^{N-1} \|\tau_n\|. \quad (17)$$

It is motivated by the specific cost of transport used, e.g., in [14]. Thus, the objective function (17) minimizes the control effort and at the same time maximizes the step length in walking direction.

According to (9), the task is to minimize (17), subject to the periodic boundary conditions, the reduced discrete equations (8) (whereby the discrete null space matrix and nodal reparameterization must be chosen according to the actual swing phase) and the reduced contact transfer conditions (16). Furthermore, path constraints in the form of inequalities prevent the legs from interpenetrating each other by requiring that the distance between the legs at the thickest point is always positive.

5.2.5 *Results*

The legs of the particular walker model considered here are double cones of length 0.5 m and radius 0.05 m. One leg’s mass is 5 kg and the point mass representing the torso is 10 kg. The simulation takes place in the time interval $[0, 0.7]$ s and uses $N = 13$ time steps, it is assumed that the double stance configuration happens at $\iota = 6$. Again, the aim is to compare the results of the proposed energy momentum consistent method the previous results obtained using the symplectic momentum method DMOCC.

Again, the restricted optimization problem is solved in Matlab using the `fmincon` function with an accuracy of 10^{-8} as tolerance for the fulfillment of the constraints and for this problem, the Jacobians of the cost function and constraint functions with respect to the unknowns have been explicitly provided to `fmincon`. To compare both mechanical integrators in the context of optimal control simulations, we use the optimized trajectory and torque sequence of the symplectic momentum scheme DMOCC (using the relative discrete reparameterization) as an initial guess for the energy momentum method. Note that due to the different definition of discrete momenta in the schemes, care must be taken when transforming the momenta. The resulting trajectories are similar, but not exactly equal. The objective function value of the symplectic momentum scheme is $J_d^{SM} = 7.9560 \text{Nm} \cdot \text{s}$ and the value of the energy momentum method is $J_d^{EM} = 7.7859 \text{Nm} \cdot \text{s}$, which yields an relative difference of 2 %. The step length of the energy momentum scheme is $s_{l}^{EM} = 0.2124$ m and that of the symplectic momentum scheme is $s_{l}^{SM} = 0.2064$ m. The control effort of
the symplectic momentum method is about 1.6421 Nm and the control effort of the energy momentum scheme is about 1.6537 Nm. The evolution of the hip’s joint actuation is illustrated in Fig. 11 and it is obvious that the maximum torques are applied in the time interval after the double stance configuration. The maximum torque value of the energy momentum integrator is about 14.5665 Nm and of the symplectic momentum scheme is about 14.0488 Nm.

Figures 12 and 13 illustrate the feet and hip trajectories of both methods. The trajectories are qualitatively very similar, but in the case of the energy momentum scheme the feet movements are slightly more far-reaching as can be seen in Fig. 14. The lifting of the feet is plotted in the lower part of Fig. 12 and the resulting evolution shows the influence of gravity. During the specific gait phases, the angular momentum with respect to the attachment point is conserved exactly for both schemes.
Fig. 13 Compass gait: projection of hip and foot trajectories to the ground plane for the energy momentum method (a) and the symplectic momentum method (b).

Fig. 14 Compass gait: comparison of the ground projected hip and feet trajectories for both schemes.

6 Conclusion

A numerical method for the energy momentum consistent simulation of optimal control problems in multibody dynamics has been developed. This provides an energy momentum consistent alternative to the previously introduced symplectic momentum consistent method DMOCC. The comparison of numerical results shows that both formulations lead to similar results. Both methods (the energy momentum consistent and the symplectic momentum consistent one) can be assigned to the more general class of structure preserving simulation methods for mechanical systems. Their importance in forward dynamical simulations is widely accepted. However, in the context of optimal control simulations, structure preservation can be considered as even more relevant for two reasons. First of all, it yields very robust schemes allowing the use of relatively large time steps, which is important since the resulting constrained optimization problem involves the complete discrete trajectory in contrast to just one step forward in time. Here also the reduced dimension of the discrete equations of motion resulting from the discrete null space method plays an important role. Secondly, structure preservation, and in particular a consistent reaction of the system’s energy and momentum maps, ensures that actuation is transformed into motion in a correct way. If this was not the case, i.e., if part of the actuation was dissipated numerically, the value of commonly used objective functions like the control effort would not be really interpretable.
Appendix A

A.1 Proof of angular momentum consistency for an actuated rigid body

In order to prove that the time stepping scheme (8) is angular momentum consistent, we need the following two expressions for the conjugate momentum at a time node that can be derived from (2)–(3). They read

\[p_n(q_n, q_{n+1}) = \frac{1}{\Delta t} \mathbf{M} \cdot (q_{n+1} - q_n) + \frac{\Delta t}{2} \nabla \tilde{V}(q_n, q_{n+1}) + \frac{\Delta t}{2} \mathbf{G}^T (q_n, q_{n+1}) \cdot \lambda_{n+1} \]

\[- \frac{\Delta t}{2} \tilde{f}(q_n, q_{n+1}) \]

(18)

and

\[p_{n+1}(q_n, q_{n+1}) = \frac{1}{\Delta t} \mathbf{M} \cdot (q_{n+1} - q_n) - \frac{\Delta t}{2} \nabla \tilde{V}(q_n, q_{n+1}) - \frac{\Delta t}{2} \mathbf{G}^T (q_n, q_{n+1}) \cdot \lambda_{n+1} \]

\[+ \frac{\Delta t}{2} \tilde{f}(q_n, q_{n+1}). \]

(19)

According to (5), the change in angular momentum of a rigid body can be computed as

\[\mathbf{L}(q_{n+1}, q_{n+1}) - \mathbf{L}(q_n, q_n) \]

\[= \varphi_{n+1} \times p_{\varphi n+1} + d_{\varphi n+1} \times p_{\varphi n+1} - \varphi_n \times p_{\varphi n} - d_{\varphi n} \times p_{\varphi n} \]

\[= \varphi_{n+1} \times \frac{1}{\Delta t} \cdot \tau_{\varphi n+1} - \varphi_n \times \frac{\Delta t}{2} \nabla \tilde{V}(q_n, q_{n+1}) - d_{\varphi n+1} \times \frac{\Delta t}{2} \nabla \tilde{d}_i V(q_n, q_{n+1}) \]

\[- \frac{\Delta t}{4} \cdot [\hat{d}_n \times \cdot \hat{d}_n \times]^{-1} [\hat{d}_n \times \cdot \hat{d}_n \times] + \hat{d}_n \times \cdot \hat{d}_n \times \]

\[+ \hat{d}_n \times \cdot \hat{d}_n \times \]

(18)

\[= [\varphi_{n+1} + \varphi_n] \times \frac{\Delta t}{2} \cdot \tau_{\varphi n} - [\varphi_{n+1} + \varphi_n] \times \frac{\Delta t}{2} \nabla \tilde{V}(q_n, q_{n+1}) \]

\[- [d_{\varphi n+1} + d_{\varphi n}] \times \frac{\Delta t}{2} \nabla \tilde{d}_i V(q_n, q_{n+1}) \]

\[- \frac{\Delta t}{2} \cdot [\hat{d}_n \times \cdot \hat{d}_n \times]^{-1} [\hat{d}_n \times \cdot \hat{d}_n \times] + \hat{d}_n \times \cdot \hat{d}_n \times \]

(19)
\[\varphi_{n+\frac{1}{2}} = \varphi_n + \Delta t \cdot \nabla \psi \cdot V(q_n, q_{n+1}) \]

\[- d_{n+\frac{1}{2}} \Delta t \nabla d \cdot V(q_n, q_{n+1}) + \varphi_{n+\frac{1}{2}} \Delta t \cdot \tau \varphi \Delta t \cdot \tau \theta. \]

References

30. Leyendecker, S., Marsden, J.E., Pekarek, D., Marsden, J.E.: Structure preserving optimal control of three-dimensional compass gait (2010). Accepted for publication

