Summary

Hydrogen-Deuterium Exchange Mass Spectroscopy (HDXMS) can provide important experimental insights into functional dynamics based on neutron exchange between protein and solvent. The long time-scales of HDXMS experiments, however, and limited computational tools often make data interpretation challenging. Here, we use our geometric rigidity analysis of proteins to provide a structural basis for motions with hierarchically increasing hydrogen bond (H-bond) violations. Our approach encodes H-bonds as holonomic constraints, imposing collective motions on the dihedral degrees of freedom to maintain cycle-closure. Methodologically, the approach bridges rigidity theory and normal mode analysis, providing detailed insights on the molecular motion spectrum. H-bond violations, represented by the distribution of singular values of the constraint Jacobian matrix, prove to be a conserved feature of protein hydrogen bonding networks. The connection to HDXMS builds on the distribution of singular values of the constraint Jacobian matrix, proving to be a conserved feature of protein hydrogen bonding networks. The connection to HDXMS builds on the hypothesis that these violations are related to functional, dynamic exchange in the molecule. Our kinematic, time-independent analysis is very fast and applicable to proteins and RNA, making it suitable to study motions across spatio-temporal scales in a matter of seconds. Predictions from KGS hierarchical motions on exchanging hydrogen bonds show qualitative agreement with HDXMS measurements. The KGS approach bridges rigidity theory and normal mode analysis, providing tools for understanding the hydrogen bonding networks in a wide range of proteins, strengthening our hypothesis. For Staphylococcal Nuclease, we obtained good to fair correlations when hydrogen bonds to surrounding solvent are included. Taken together, our analysis suggests that a hierarchy of perturbations encoded in the H-bond network can predict HDX in macromolecules.

Motivation

Experimental baseline
• Hydrogen-Deuterium Exchange Mass spectrometry (HDXMS) measures Deuterium uptake for peptides
• amidite hydrogens exchange from an open, exchange-competent state
\[(\text{N} - \text{H})_C \leftrightarrow (\text{N} - \text{D})_C \]
• exchange informs about structure and dynamics of the protein
• more / faster exchange \(\Rightarrow \) flexible, dynamic region
• less / slower exchange \(\Rightarrow \) robust, stable region

Experimental challenges
• data is sparse
• imperfect information
• large range of timescales
• error-prone measurements

Computational challenges
• questionable influences on HDX from burial depth, charge,...
• imperfect correlations
• MD ensemble/sampling based

Modeling concepts
• H-bonds are strong protectors from exchange
• H-bonds form non-covalent interaction networks, stabilizing secondary and tertiary structure
• conformational fluctuations can weaken hydrogen bonds, enabling residues to access the open state

encode H-bonds as constraint networks and HDX as constraint violations due to conformational changes